Ground state solutions of Pohozaev type for fractional Choquard equations with general nonlinearities

被引:10
作者
Luo, Huxiao [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Variational methods; Fractional Choquard equation; Ground state solution of Pohozaev type; Berestycki-Lions conditions; EXISTENCE;
D O I
10.1016/j.camwa.2018.10.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fractional Choquard equation (-Delta)(s)u + u = (vertical bar x vertical bar(-mu)*F(u))f(u), in R-N, where N >= 3, 0 < s < 1, 0 < mu < min{N, 4s), and f is an element of C(R, R) satisfies the general Berestycki-Lions conditions. Combining constrained variational method with deformation lemma, we obtain a ground state solution of Pohozaev type for the above equation. The result improves some ones in Shen et al. (2016). (C) 2018 Published by Elsevier Ltd.
引用
收藏
页码:877 / 887
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2009, ARXIV09102721
[2]  
[Anonymous], 2018, ARXIV180301130
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]  
Bertoin J, 1996, Cambridge Tracts in Mathematics, V121
[5]   On fractional Schrodinger systems of Choquard type [J].
Bhattarai, Santosh .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (06) :3197-3229
[6]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[7]   Variational problems with free boundaries for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel ;
Sire, Yannick .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1151-1179
[8]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432
[9]   On fractional Choquard equations [J].
d'Avenia, Pietro ;
Siciliano, Gaetano ;
Squassina, Marco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1447-1476
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573