Effect of sulfur passivation on the InP surface prior to plasma-enhanced chemical vapor deposition of SiNx

被引:5
|
作者
Tang, Hengjing [1 ,2 ]
Wu, Xiaoli [1 ,2 ]
Xu, Qinfei [1 ,2 ]
Liu, Hongyang [1 ,2 ]
Zhang, Kefeng [1 ,2 ]
Wang, Yang [1 ]
He, Xiangrong [1 ]
Li, Xue [1 ]
Gong, Hai Mei [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Transducer Technol, Shanghai 200083, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
D O I
10.1088/0268-1242/23/3/035031
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)(2)S-x-treated n-InP. The SiNx layer was deposited at 200 degrees C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 x 10(12) cm(-2) and 7.41 x 10(11) cm(-2) eV(-1), respectively. A 256 x 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] PLASMA-ENHANCED CHEMICAL VAPOR-DEPOSITION OF TUNGSTEN
    MAHOWALD, MA
    IANNO, NJ
    THIN SOLID FILMS, 1989, 170 (01) : 91 - 97
  • [32] Plasma-enhanced chemical vapor deposition of nanocrystalline diamond
    Okada, Katsuyuki
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2007, 8 (7-8) : 624 - 634
  • [33] PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION OF DIELECTRICS.
    Gorczyca, T.B.
    Gorowitz, B.
    1600, Academic Press Inc, Orlando, FL, USA (08):
  • [34] Applications of plasma-enhanced metalorganic chemical vapor deposition
    Smaglik, Nathan
    Pokharel, Nikhil
    Ahrenkiel, Phil
    JOURNAL OF CRYSTAL GROWTH, 2020, 535 (535)
  • [35] Plasma-Enhanced Chemical Vapor Deposition of Graphene Nanostructures
    van der Laan, Timothy
    Kumar, Shailesh
    Ostrikova, Kostya
    ADVANCES IN NANODEVICES AND NANOFABRICATION, 2012, : 75 - 98
  • [36] Surface reactions during plasma-enhanced chemical vapor deposition of hydrocarbon films
    von Keudell, A.
    Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1997, 125 (1-4): : 323 - 327
  • [37] Carbon nanotubes by plasma-enhanced chemical vapor deposition
    Bell, Martin S.
    Teo, Kenneth B. K.
    Lacerda, Rodrigo G.
    Milne, W. I.
    Hash, David B.
    Meyyappan, M.
    PURE AND APPLIED CHEMISTRY, 2006, 78 (06) : 1117 - 1125
  • [38] Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires
    Hou, Wen Chi
    Hong, Franklin Chau-Nan
    NANOTECHNOLOGY, 2009, 20 (05)
  • [39] Plasma-enhanced chemical vapor deposition of thick silicon nitride films with low stress on InP
    Shi, L
    Steenbergen, CAM
    deVreede, AH
    Smit, MK
    Scholtes, TLM
    Groen, FH
    Pedersen, JW
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1996, 14 (02): : 471 - 473
  • [40] PVDF films with superhydrophobic surface fabricated by plasma-enhanced chemical vapor deposition
    Zhang, Zhiqiu
    Yang, Wenfang
    Gu, Zhenya
    Huo, Ruiting
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 1451 - 1454