The variation in soil water retention of alpine shrub meadow under different degrees of degradation on northeastern Qinghai-Tibetan plateau

被引:43
|
作者
Dai, Licong [1 ,3 ]
Guo, Xiaowei [1 ]
Ke, Xun [1 ,3 ]
Du, Yangong [1 ]
Mang, Fawei [1 ,2 ]
Cao, Guangmin [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Restorat Ecol Cold Reg, Xining 810001, Qinghai, Peoples R China
[2] Luoyang Normal Univ, Coll Life Sci, Luoyang 471934, Henan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Qinghai-Tibet plateau; Alpine shrub meadow; Soil water retention; Soil properties; Redundancy analysis; ORGANIC-MATTER; LAND-USE; HYDRAULIC CONDUCTIVITY; INFILTRATION; GRASSLAND; CARBON; REGION; VARIABILITY; PATTERNS; TILLAGE;
D O I
10.1007/s11104-020-04522-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background and aims In recent decades, an increasing proportion of alpine shrub meadow has become severely degraded owing to the combined effects of global climate warming and rodent infestation, with significant impacts on soil water retention. The present paper investigates the patterns and controlling factors of soil water retention of alpine shrub meadow under different degrees of degradation, to help inform decisions on the management of degraded alpine shrub meadow. Methods Four degradation stages were defined: non-degradation (ND); light degradation (LD); moderate degradation (MD) and higher degradation (HD). Pearson correlation and redundancy analysis were used to examine the relationships between soil physical properties and soil hydraulic properties. Results Sand content increased while clay content decreased with increasing degree of degradation. In HD treatment, the available nitrogen and soil bulk density of surface soil layer was significantly lower than that in the other three stages, whereas the soil organic matter content and soil total porosity of surface soil layer was increased significantly, the soil compaction of 0-10 cm soil depth in HD was reduced significantly. The soil water retention of 0-60 cm soil depth first decreased and then increased with increasing degradation, with the maximum values occurring in HD, and the soil organic matter has an overwhelming effect on soil water retention than soil texture. Conclusions As the degree of degradation increased, the surface soil structure deteriorated, and available nitrogen reduced while soil organic matter increased sharply in higher degradation, which leads to the highest soil water retention in higher degradation. Our results suggested that the soil water retention in degraded alpine grassland was largely determined by soil organic matter, and the soil organic matter parameters should be incorporated in hydrological models of degraded alpine ecosystem.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 50 条
  • [41] Distinct Elevational Patterns and Their Linkages of Soil Bacteria and Plant Community in An Alpine Meadow of the Qinghai-Tibetan Plateau
    Cong, Jing
    Cong, Wei
    Lu, Hui
    Zhang, Yuguang
    MICROORGANISMS, 2022, 10 (05)
  • [42] Effects of degradation level and vegetation recovery age on soil erodibility of alpine grasslands on the Qinghai-Tibetan Plateau
    Li, Yuanze
    Lu, Bingbing
    Zhou, Huakun
    Zhang, Yue
    Zhao, Ziwen
    Chen, Wenjing
    Wu, Yang
    Guo, Ziqi
    Jiang, Jun
    Xue, Sha
    JOURNAL OF SOILS AND SEDIMENTS, 2024, 24 (01) : 294 - 306
  • [43] Response of bacterial communities to shrub encroachment and forage planting in alpine grassland of the Qinghai-Tibetan Plateau
    Ma, Wenming
    Ding, Keyi
    Bai, Song
    Wang, Changting
    Droma, Tenzing
    ECOLOGICAL ENGINEERING, 2023, 186
  • [44] The energy-limited water loss of an alpine shrubland on the northeastern Qinghai-Tibetan Plateau, China
    Zhang, Fawei
    Li, Hongqin
    Zhu, Jingbin
    Li, Jiexia
    Zhou, Huakun
    Li, Yingnian
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 55
  • [45] Soil ecological stoichiometry reveals microbial nutrient limitation with alpine meadow degradation in northeastern Tibetan Plateau
    Li, Haiyun
    Qiu, Yizhi
    Ma, Li
    Yao, Xinni
    CATENA, 2024, 246
  • [46] Effect of snowpack on the soil bacteria of alpine meadows in the Qinghai-Tibetan Plateau of China
    Ade, L. J.
    Hu, L.
    Zi, H. B.
    Wang, C. T.
    Lerdau, M.
    Dong, S. K.
    CATENA, 2018, 164 : 13 - 22
  • [47] Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau
    Li, Shuai
    Dong, Shikui
    Shen, Hao
    Han, Yuhui
    Zhang, Jing
    Xu, Yudan
    Gao, Xiaoxia
    Yang, Mingyue
    Li, Yu
    Zhao, Zhenzhen
    Liu, Shiliang
    Zhou, Huakun
    Dong, Quanming
    Yeomans, Jane C.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 688 : 1405 - 1412
  • [48] Anomalous water retention capacity of alpine meadow soil with eolian dust accretion on the Tibetan Plateau
    Pei, Le-Le
    Feng, Jin-Liang
    Zhang, Wen
    Lin, Yong-Chong
    Hu, Hai-Ping
    Wang, Kun-Ying
    Chen, Ying-Ying
    Zhang, Qing
    CATENA, 2022, 213
  • [49] EFFECTS OF LIVESTOCK EXCLUSION ON VEGETATION AND SOIL PROPERTIES UNDER TWO TOPOGRAPHIC HABITATS IN AN ALPINE MEADOW ON THE EASTERN QINGHAI-TIBETAN PLATEAU
    Shi, Fusun
    Chen, Huai
    Wu, Yan
    Wu, Ning
    POLISH JOURNAL OF ECOLOGY, 2010, 58 (01) : 125 - 133
  • [50] Alfalfa planting significantly improved alpine soil water infiltrability in the Qinghai-Tibetan Plateau
    Huang, Ze
    Sun, Lei
    Liu, Yu
    Liu, Yi-Fan
    Lopez-Vicente, Manuel
    Wei, Xue-Hong
    Wu, Gao-Lin
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2019, 285