Semi-streaming quantization for remote sensing data

被引:7
作者
Braverman, A
Fetzer, E
Eldering, A
Nittel, S
Leung, K
机构
[1] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[3] Univ Maine, Dept Spatial Informat Sci & Engn, Orono, ME 04469 USA
[4] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
关键词
cluster analysis; data compression; data reduction; massive datasets;
D O I
10.1198/1061860032535
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a strategy for reducing the size and complexity of very large, remote sensing datasets acquired from NASA's Earth Observing System. We apply the quantization paradigm from, and algorithms developed in, signal processing to the problem of summarization. Because data arrive in discrete chunks, we formulate a semi-streaming strategy that partially processes chunks as they become available and stores the results. At the end of the summary time period, we re-ingest the partial summaries and summarize them. We show that mean squared errors between the final summaries and the original data can be computed from the mean squared errors incurred at the two stages without directly accessing the original data. The procedure is demonstrated using data from JPL's Atmospheric Infrared Sounder.
引用
收藏
页码:759 / 780
页数:22
相关论文
共 50 条
  • [41] Online entropy-based discretization for data streaming classification
    Ramirez-Gallego, S.
    Garcia, S.
    Herrera, F.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 59 - 70
  • [42] Data Handling in EAST Remote Participation
    Sun, Xiaoyang
    Wang, Feng
    Wang, Yong
    Li, Shi
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (11) : 2891 - 2894
  • [43] Integration of IoT Streaming Data With Efficient Indexing and Storage Optimization
    Doan, Quang-Tu
    Kayes, A. S. M.
    Rahayu, Wenny
    Kinh Nguyen
    IEEE ACCESS, 2020, 8 : 47456 - 47467
  • [44] Classifying the Hydrologic Function of Prairie Potholes with Remote Sensing and GIS
    Rover, Jennifer
    Wright, Chris K.
    Euliss, Ned H., Jr.
    Mushet, David M.
    Wylie, Bruce K.
    WETLANDS, 2011, 31 (02) : 319 - 327
  • [45] Classifying the Hydrologic Function of Prairie Potholes with Remote Sensing and GIS
    Jennifer Rover
    Chris K. Wright
    Ned H. Euliss
    David M. Mushet
    Bruce K. Wylie
    Wetlands, 2011, 31 : 319 - 327
  • [46] Blending lossy and lossless data compression methods to support health data streaming in smart cities
    Andrade, Alexandre
    Costa, Cristiano Andre da
    Roehrs, Alex
    Muchaluat-Saade, Debora
    Righi, Rodrigo da Rosa
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 167
  • [47] An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign
    Hou, Weizhen
    Wang, Jun
    Xu, Xiaoguang
    Reid, Jeffrey S.
    Janz, Scott J.
    Leitch, James W.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 253
  • [48] SoftBinReduce: data reduction for color quantization through soft binningSoftBinReduce: data reduction for color quantization...G. Rodríguez-Corominas et al.
    Guillem Rodríguez-Corominas
    Maria J. Blesa
    Christian Blum
    Multimedia Systems, 2025, 31 (3)
  • [49] Data Compression for DNN Weighting Coefficients using Layer Adaptive Quantization
    Aogaki, Ryota
    Yashima, Yoshiyuki
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2021, 2021, 11766
  • [50] Streaming Piecewise Linear Approximation for Efficient Data Management in Edge Computing
    Duvignau, Romaric
    Gulisano, Vincenzo
    Papatriantafilou, Marina
    Savic, Vladimir
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 593 - 596