Semi-streaming quantization for remote sensing data

被引:7
作者
Braverman, A
Fetzer, E
Eldering, A
Nittel, S
Leung, K
机构
[1] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[3] Univ Maine, Dept Spatial Informat Sci & Engn, Orono, ME 04469 USA
[4] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
关键词
cluster analysis; data compression; data reduction; massive datasets;
D O I
10.1198/1061860032535
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a strategy for reducing the size and complexity of very large, remote sensing datasets acquired from NASA's Earth Observing System. We apply the quantization paradigm from, and algorithms developed in, signal processing to the problem of summarization. Because data arrive in discrete chunks, we formulate a semi-streaming strategy that partially processes chunks as they become available and stores the results. At the end of the summary time period, we re-ingest the partial summaries and summarize them. We show that mean squared errors between the final summaries and the original data can be computed from the mean squared errors incurred at the two stages without directly accessing the original data. The procedure is demonstrated using data from JPL's Atmospheric Infrared Sounder.
引用
收藏
页码:759 / 780
页数:22
相关论文
共 50 条
  • [31] Hyperspectral data compression using a fast vector quantization algorithm
    Qian, SE
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08): : 1791 - 1798
  • [32] Predictive Quantization for Data Volume Reduction in Staggered SAR Systems
    Martone, Michele
    Gollin, Nicola
    Villano, Michelangelo
    Rizzoli, Paola
    Krieger, Gerhard
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5575 - 5587
  • [33] Optimization Based Vector Quantization for Data Reduction in Multimedia Applications
    Kavitha, V. R.
    Kanchana, M.
    Gobinathan, B.
    Sekar, K. R.
    Sikkandar, Mohamed Yacin
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (02) : 853 - 867
  • [34] Data-driven stochastic inversion via functional quantization
    El Amri, Mohamed Reda
    Helbert, Celine
    Lepreux, Olivier
    Zuniga, Miguel Munoz
    Prieur, Clementine
    Sinoquet, Delphine
    STATISTICS AND COMPUTING, 2020, 30 (03) : 525 - 541
  • [35] Data-driven stochastic inversion via functional quantization
    Mohamed Reda El Amri
    Céline Helbert
    Olivier Lepreux
    Miguel Munoz Zuniga
    Clémentine Prieur
    Delphine Sinoquet
    Statistics and Computing, 2020, 30 : 525 - 541
  • [36] Super point detection based on sampling and data streaming algorithms
    School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
    不详
    J. Southeast Univ. Engl. Ed., 2009, 2 (224-227):
  • [37] Content-sensitive Data Compression for IoT Streaming Services
    Hsu, Chun-chi
    Fang, Yuan-ting
    Yu, Fang
    2017 IEEE 2ND INTERNATIONAL CONGRESS ON INTERNET OF THINGS (IEEE ICIOT), 2017, : 147 - 150
  • [38] Online entropy-based discretization for data streaming classification
    Ramirez-Gallego, S.
    Garcia, S.
    Herrera, F.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 59 - 70
  • [39] Predictive Quantization of Range-Focused SAR Raw Data
    Ikuma, Takeshi
    Naraghi-Pour, Mort
    Lewis, Thomas
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (04): : 1340 - 1348
  • [40] Data Handling in EAST Remote Participation
    Sun, Xiaoyang
    Wang, Feng
    Wang, Yong
    Li, Shi
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (11) : 2891 - 2894