Weighted Cebysev Type Inequalities for Double Integrals and Application

被引:2
作者
Khan, Asif R. [1 ]
Nasir, Hira [2 ]
Shirazi, S. Sikander [3 ]
机构
[1] Univ Karachi, Dept Math, Univ Rd, Karachi 75270, Pakistan
[2] Fed Urdu Univ Arts Sci & Technol, Dept Math, Univ Rd, Karachi 75270, Pakistan
[3] Muhammad Ali Jinnah Univ, Dept Basic Sci, PECHS Main Shahrahe Faisal, Karachi 75400, Pakistan
关键词
Cebysev inequality; Weighted Cebysev inequality; Montgomery identity; Probability density function;
D O I
10.22130/scma.2021.129537.815
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this article is to generalize Cebysev type inequalities for double integrals involving a weight function. By using an integral transform that is a weighted Montgomery identity, we obtained a generalized form of weighted Cebysev type inequalities in L-m, m >= 1 norm of differentiable functions. Also, we give some applications of the probability density function.
引用
收藏
页码:59 / 72
页数:15
相关论文
共 16 条
[1]   New weighted Ostrowski and Cebysev type inequalities [J].
Ahmad, Farooq ;
Barnett, N. S. ;
Dragomir, S. S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1408-E1412
[2]  
[Anonymous], 2001, Soochow J. Math
[3]  
BOUKERRIOUA K., 2007, J INEQUAL PURE APPL, V8
[4]  
DRAGOMIR S. S., 2000, TAMSUI OXF J MATH SC, P1
[5]   Generalization of weighted Ostrowski-Gruss type inequality by using Korkine's identity [J].
Dragomir, Silvestru Sever ;
Irshad, Nazia ;
Khan, Asif R. .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (02) :183-198
[6]  
ebyev P.L., 1882, P MATH SOC CHARKOV, V2, P93
[7]  
Guezane-Lakoud A, 2011, J MATH INEQUAL, V5, P453
[8]  
Irshad N., 2018, TJMM, V10, P15
[9]  
Khan A.R., 2013, REV ANAL NUMER THEOR, V42, P49
[10]  
Mitrinovic D. S., 1991, INEQUALITIES INVOLVI