Weak Solutions for Fractional Differential Equations via Henstock-Kurzweil-Pettis Integrals

被引:1
作者
Gou, Haide [1 ]
Li, Yongxiang [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
weak solutions; Henstock-Kurzweil-Pettis integral; weak measure of noncompactness; boundary value problem; BOUNDARY-VALUE PROBLEM; BANACH-SPACES; EXISTENCE; THEOREMS;
D O I
10.1515/ijnsns-2018-0174
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we used Henstock-Kurzweil-Pettis integral instead of classical integrals. Using fixed point theorem and weak measure of noncompactness, we study the existence of weak solutions of boundary value problem for fractional integro-differential equations in Banach spaces. Our results generalize some known results. Finally, an example is given to demonstrate the feasibility of our conclusions.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 24 条
[1]   Weak solutions for fractional differential equations in nonreflexive Banach spaces via Riemann-Pettis integrals [J].
Agarwal, Ravi P. ;
Lupulescu, Vasile ;
O'Regan, Donal ;
ur Rahman, Ghaus .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (04) :395-409
[2]  
[Anonymous], 1995, Discuss. Math. Differ. Incl.
[3]  
[Anonymous], 2012, Theories of integration: The integral. of Riemann, Lebesgue, Henstock-Kurzweil
[4]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[5]   On an integral equation under Henstock–Kurzweil–Pettis integrability [J].
Ben Amar A. .
Arabian Journal of Mathematics, 2015, 4 (2) :91-99
[6]  
Ben Amar A, 2011, COMMENT MATH UNIV CA, V52, P177
[7]   On solutions of differential equations in Banach spaces [J].
Cichon, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (04) :651-667
[8]   The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem [J].
Cichon, M ;
Kubiaczyk, I ;
Sikorska, A .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (02) :279-289
[9]  
Cichon M., 1996, DISCUSS MATH DIFFER, V16, P171
[10]   Weak solutions for the dynamic Cauchy problem in Banach spaces [J].
Cichon, Mieczyslaw ;
Kubiaczyk, Ireneusz ;
Sikorska-Nowak, Aneta ;
Yantir, Ahmet .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2936-2943