On a sharp estimate for Hankel operators and Putnam's inequality

被引:8
作者
Olsen, Jan-Fredrik [1 ]
Reguera, Maria Carmen [2 ]
机构
[1] Lund Univ, Ctr Math Sci, POB 118, SE-22100 Lund, Sweden
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
Bergman spaces; Hankel operators; Putnam's inequality; de Saint-Venant inequality; isoperimetric inequality;
D O I
10.4171/rmi/892
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a sharp norm estimate for Hankel operators with anti-analytic symbol for weighted Bergman spaces. For the classical Bergman space, the estimate improves the corresponding classical Putnam inequality for commutators of Toeplitz operators with analytic symbol by a factor of 1/2, answering a recent conjecture by Bell, Ferguson and Lundberg. As an application, this yields a new proof of the de Saint-Venant inequality, which relates the torsional rigidity of a domain with its area.
引用
收藏
页码:495 / 510
页数:16
相关论文
共 7 条
[1]  
BELL SR, 2014, MATH P R IR ACAD A, V114, P115, DOI [10.3318/pria.2014.114.03, DOI 10.3318/PRIA.2014.114.03]
[2]  
Duren P.L., 1970, Pure and Applied Mathematics, V38, P74
[3]   Extremal Domains for Self-Commutators in the Bergman Space [J].
Fleeman, Matthew ;
Khavinson, Dmitry .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (01) :99-111
[4]  
Hedenmalm H., 2000, GRAD TEXT M, V199, DOI 10.1007/978-1-4612-0497-8
[5]  
KHAVINSON D, 1985, LECT NOTES MATH, V1166, P89
[6]  
Polya G., 1951, ANN MATH STUDIES, V27
[7]   AN INEQUALITY FOR AREA OF HYPONORMAL SPECTRA [J].
PUTNAM, CR .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (04) :323-&