Hierarchical frequency control strategy of hybrid droop/VSG-based islanded microgrids

被引:50
作者
Chen, Meng [1 ]
Xiao, Xiangning [1 ]
机构
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing, Peoples R China
关键词
Microgrids; Virtual synchronous generator; Small-signal; Secondary frequency control; Internal model control; DELAY POWER-SYSTEMS; SYNCHRONOUS GENERATORS; SECONDARY CONTROL; INVERTERS; OPERATION; DESIGN; AC;
D O I
10.1016/j.epsr.2017.10.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compared to the conventional centralized power system, in which synchronous generators with speed control offering favorable dynamic behaviors, the islanded microgrid dominated by distributed generators may encounter severe frequency instability. Thus droop control and virtual synchronous generator control have been proposed to design the primary frequency level of the islanded microgrids. In this context, both of these two control strategies will coexist and interact with each other in a microgrid due to their different reaction speed. This paper focuses on the frequency stability of islanded microgrids. The interactions between virtual synchronous generator-based and droop-based parallel inverters are firstly investigated. The small-signal model is used to study the effects of variation of important control parameters. Then the secondary level is also established to compensate the frequency deviation. The internal model control based strategy is used to improve robustness for communication delays of the secondary level. Furthermore, a traditional PI controller is also proposed based on robust H infinity method for comparison. An islanded microgrid test system including four distributed generators dominated by different control strategies is built in PSCAD/EMTDC to verify the proposed control structure. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 27 条
[1]   Secondary Control Strategies for Frequency Restoration in Islanded Microgrids With Consideration of Communication Delays [J].
Ahumada, Constanza ;
Cardenas, Roberto ;
Saez, Doris ;
Guerrero, Josep M. .
IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (03) :1430-1441
[2]   Robust decentralised PI based LFC design for time delay power systems [J].
Bevrani, Hassan ;
Hiyama, Takashi .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (02) :193-204
[3]   Virtual synchronous generators: A survey and new perspectives [J].
Bevrani, Hassan ;
Ise, Toshifumi ;
Miura, Yushi .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 54 :244-254
[4]   Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization [J].
Bidram, Ali ;
Davoudi, Ali ;
Lewis, Frank L. ;
Guerrero, Josep M. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) :3462-3470
[5]   Hierarchical Structure of Microgrids Control System [J].
Bidram, Ali ;
Davoudi, Ali .
IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (04) :1963-1976
[6]   Equivalence of Virtual Synchronous Machines and Frequency-Droops for Converter-Based MicroGrids [J].
D'Arco, Salvatore ;
Suul, Jon Are .
IEEE TRANSACTIONS ON SMART GRID, 2014, 5 (01) :394-395
[7]  
Dorf R.C., 2017, Modern control systems, V13th ed.
[8]   A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation [J].
Gao, Fang ;
Iravani, M. Reza .
IEEE TRANSACTIONS ON POWER DELIVERY, 2008, 23 (02) :850-859
[9]   Decentralized control for parallel operation of distributed generation inverters using resistive output impedance [J].
Guerrero, Josep M. ;
Matas, Jose ;
Garcia de Vicuna, Luis ;
Castilla, Miguel ;
Miret, Jaume .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (02) :994-1004
[10]   Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization [J].
Guerrero, Josep M. ;
Vasquez, Juan C. ;
Matas, Jose ;
Garci de Vicuna, Luis ;
Castilla, Miguel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (01) :158-172