Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection

被引:38
作者
Maciag, Joseph J. [1 ,2 ]
Mackenzie, Sarah H. [2 ]
Tucker, Matthew B. [2 ]
Schipper, Joshua L. [2 ,4 ]
Swartz, Paul [2 ]
Clark, A. Clay [1 ,2 ,3 ]
机构
[1] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA
[2] North Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA
[3] North Carolina State Univ, Ctr Comparat Med & Translat Res, Raleigh, NC 27695 USA
[4] Duke Univ, Inst Genome Sci, Durham, NC 27708 USA
基金
美国国家卫生研究院;
关键词
allostery; conformational selection; saturation mutagenesis; protein solvation; protein structure; ACTIVE-SITE; STRUCTURAL BASIS; CRYSTAL-STRUCTURES; PROTEIN; PHOSPHORYLATION; MECHANISMS; INHIBITION; ACTIVATION; LOOP; DYNAMICS;
D O I
10.1073/pnas.1603549113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 angstrom) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection.
引用
收藏
页码:E6080 / E6088
页数:9
相关论文
共 67 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils [J].
Alvarado-Kristensson, M ;
Melander, F ;
Leandersson, K ;
Rönnstrand, L ;
Wernstedt, C ;
Andersson, T .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 199 (04) :449-458
[3]   Mechanisms of caspase activation [J].
Boatright, KM ;
Salvesen, GS .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (06) :725-731
[4]   An uncleavable procaspase-3 mutant has a lower catalytic efficiency but an active site similar to that of mature caspase-3 [J].
Bose, K ;
Pop, C ;
Feeney, B ;
Clark, AC .
BIOCHEMISTRY, 2003, 42 (42) :12298-12310
[5]   Dimeric procaspase-3 unfolds via a four-state equilibrium process [J].
Bose, K ;
Clark, AC .
BIOCHEMISTRY, 2001, 40 (47) :14236-14242
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   Modifying Caspase-3 Activity by Altering Allosteric Networks [J].
Cade, Christine ;
Swartz, Paul ;
MacKenzie, Sarah H. ;
Clark, A. Clay .
BIOCHEMISTRY, 2014, 53 (48) :7582-7595
[8]   Inhibitory Mechanism of Caspase-6 Phosphorylation Revealed by Crystal Structures, Molecular Dynamics Simulations, and Biochemical Assays [J].
Cao, Qin ;
Wang, Xiao-Jun ;
Liu, Cheng-Wen ;
Liu, Dai-Fei ;
Li, Lan-Fen ;
Gao, Yi-Qin ;
Su, Xiao-Dong .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (19) :15371-15379
[9]   Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding [J].
Chai, JJ ;
Wu, Q ;
Shiozaki, E ;
Srinivasula, SM ;
Alnemri, ES ;
Shi, YG .
CELL, 2001, 107 (03) :399-407
[10]   Structural basis of caspase-7 inhibition by XIAP [J].
Chai, JJ ;
Shiozaki, E ;
Srinivasula, SM ;
Wu, Q ;
Dataa, P ;
Alnemri, ES ;
Shi, YG .
CELL, 2001, 104 (05) :769-780