Targeted Nanogels: A Versatile Platform for Drug Delivery to Tumors

被引:64
作者
Murphy, Eric A. [1 ]
Majeti, Bharat K. [1 ]
Mukthavaram, Rajesh [1 ]
Acevedo, Lisette M. [1 ]
Barnes, Leo A. [1 ]
Cheresh, David A. [1 ]
机构
[1] Univ Calif San Diego, Dept Pathol, Moores Canc Ctr, UCSD NanoTumor Ctr, La Jolla, CA 92093 USA
关键词
CHEMOTHERAPEUTIC-AGENTS; CANCER-CHEMOTHERAPY; POLYMERIC MICELLES; NANOPARTICLES; PACLITAXEL; ANGIOGENESIS; METASTASIS; NEOVASCULATURE; DOXORUBICIN; LIPOSOMES;
D O I
10.1158/1535-7163.MCT-10-0729
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although nanoparticle-based drug delivery formulations can improve the effectiveness and safety of certain anticancer drugs, many drugs, due to their chemical composition, are unsuitable for nanoparticle loading. Here, we describe a targeted nanogel drug delivery platform that can (i) encapsulate a wide range of drug chemotypes, including biological, small molecule, and cytotoxic agents; (ii) display targeting ligands and polymeric coatings on the surface; (iii) enhance drug retention within the nanogel core after photo-cross-linking; and (iv) retain therapeutic activity after lyophilization allowing for long-term storage. For therapeutic studies, we used integrin alpha v beta 3-targeted lipid-coated nanogels with cross-linked human serum albumin in the core for carrying therapeutic cargoes. These particles exhibited potent activity in tumor cell viability assays with drugs of distinct chemotype, including paclitaxel, docetaxel, bortezomib, 17-AAG, sorafenib, sunitinib, bosutinib, and dasatinib. Treatment of orthotopic breast and pancreas tumors in mice with taxane-loaded nanogels produced a 15-fold improvement in antitumor activity relative to Abraxane by blocking both primary tumor growth and spontaneous metastasis. With a modifiable surface and core, the lipid-coated nanogel represents a platform technology that can be easily adapted for specific drug delivery applications to treat a wide range of malignant diseases. Mol Cancer Ther; 10(6); 972-82. (C)2011 AACR.
引用
收藏
页码:972 / 982
页数:11
相关论文
共 43 条
[1]   Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma [J].
Aguirre, AJ ;
Bardeesy, N ;
Sinha, M ;
Lopez, L ;
Tuveson, DA ;
Horner, J ;
Redston, MS ;
DePinho, RA .
GENES & DEVELOPMENT, 2003, 17 (24) :3112-3126
[2]   Opportunities and challenges of carbon-based nanomaterials for cancer therapy [J].
Bianco, Alberto ;
Kostarelos, Kostas ;
Prato, Maurizio .
EXPERT OPINION ON DRUG DELIVERY, 2008, 5 (03) :331-342
[3]   Polymer-surfactant nanoparticles for sustained release of water-soluble drugs [J].
Chavanpatil, Mahesh D. ;
Khdair, Ayman ;
Patil, Yogesh ;
Handa, Hitesh ;
Mao, Guangzhao ;
Panyam, Jayanth .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2007, 96 (12) :3379-3389
[4]   An improved synthesis of a selective αvβ3-integrin antagonist cyclo(-RGDfK-) [J].
Dai, XD ;
Su, Z ;
Liu, JO .
TETRAHEDRON LETTERS, 2000, 41 (33) :6295-6298
[5]   Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status [J].
Desai, Neil P. ;
Trieu, Vuong ;
Hwang, Larn Yuan ;
Wu, Rujin ;
Soon-Shiong, Patrick ;
Gradishar, William J. .
ANTI-CANCER DRUGS, 2008, 19 (09) :899-909
[6]  
Drummond DC, 1999, PHARMACOL REV, V51, P691
[7]   Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis [J].
Ebos, John M. L. ;
Lee, Christina R. ;
Cruz-Munoz, William ;
Bjarnason, Georg A. ;
Christensen, James G. ;
Kerbel, Robert S. .
CANCER CELL, 2009, 15 (03) :232-239
[8]   Development of liposomal anthracyclines: from basics to clinical applications [J].
Gabizon, A ;
Goren, D ;
Cohen, R ;
Barenholz, Y .
JOURNAL OF CONTROLLED RELEASE, 1998, 53 (1-3) :275-279
[9]   Pros and cons of the liposome platform in cancer drug targeting [J].
Gabizon, Alberto A. ;
Shmeeda, Hilary ;
Zalipsky, Samuel .
JOURNAL OF LIPOSOME RESEARCH, 2006, 16 (03) :175-183
[10]  
Gradishar W, 2007, J CLIN ONCOL, V25