Performance and Effect of Load Mitigation of a Trailing-Edge Flap in a Large-Scale Offshore Wind Turbine

被引:10
|
作者
Cai, Xin [1 ]
Wang, Yazhou [1 ]
Xu, Bofeng [1 ,2 ]
Feng, Junheng [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Nanjing 211100, Peoples R China
[2] Hohai Univ, Coll Energy & Elect Engn, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
offshore wind turbine; trailing-edge flap; load mitigation; free vortex wake; ROTOR;
D O I
10.3390/jmse8020072
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
As a result of the large-scale trend of offshore wind turbines, wind shear and turbulent wind conditions cause significant fluctuations of the wind turbine's torque and thrust, which significantly affect the service life of the wind turbine gearbox and the power output stability. The use of a trailing-edge flap is proposed as a supplement to the pitch control to mitigate the load fluctuations of large-scale offshore wind turbines. A wind turbine rotor model with a trailing-edge flap is established by using the free vortex wake (FVW) model. The effects of the deflection angle of the trailing-edge flap on the load distribution of the blades and wake flow field of the offshore wind turbine are analyzed. The wind turbine load response under the control of the trailing-edge flap is obtained by simulating shear wind and turbulent wind conditions. The results show that a better control effect can be achieved in the high wind speed condition because the average angle of attack of the blade profile is small. The trailing-edge flap significantly changes the load distribution of the blade and the wake field and mitigates the low-frequency torque and thrust fluctuations of the turbine rotor under the action of wind shear and turbulent wind.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Trailing-Edge Flap Control for Mitigating Rotor Power Fluctuations of a Large-Scale Offshore Floating Wind Turbine under the Turbulent Wind Condition
    Xu, Bofeng
    Feng, Junheng
    Wang, Tongguang
    Yuan, Yue
    Zhao, Zhenzhou
    Zhong, Wei
    ENTROPY, 2018, 20 (09)
  • [2] Trailing-edge serrations effect on the performance of a wind turbine
    Llorente, Elena
    Ragni, Daniele
    RENEWABLE ENERGY, 2020, 147 (147) : 437 - 446
  • [3] Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section
    Zhuang, Chen
    Yang, Gang
    Zhu, Yawei
    Hu, Dean
    RENEWABLE ENERGY, 2020, 148 : 964 - 974
  • [4] Trailing-edge flow control for wind turbine performance and load control
    Chen, Hao
    Qin, Ning
    RENEWABLE ENERGY, 2017, 105 : 419 - 435
  • [5] Unsteady load mitigation through a passive trailing-edge flap
    Arredondo-Galeana, Abel
    Young, Anna M.
    Smyth, Amanda S. M.
    Viola, Ignazio Maria
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 106
  • [6] AEROELASTIC SUPPRESSION OF WIND TURBINE BLADE USING TRAILING-EDGE FLAP
    Li, Nailu
    Balas, Mark J.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES, AND INTELLIGENT SYSTEMS - 2013, VOL 1, 2014,
  • [7] Aeroelastic control of wind turbine blade using trailing-edge flap
    Li, Nailu
    Balas, Mark
    WIND ENGINEERING, 2014, 38 (05) : 549 - 560
  • [8] Aerodynamic performance analysis of a trailing-edge flap for wind turbines
    Xu Bofeng
    Feng Junheng
    Li Qing
    Xu Chang
    Zhao Zhenzhou
    Yuan Yue
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [9] Effects of the morphed trailing-edge flap parameters on the aerodynamic performance of NREL Phase II wind turbine
    Yin, Rui
    Xie, Jian-Bin
    Yao, Ji
    WIND ENGINEERING, 2024, 48 (05) : 784 - 803
  • [10] Performance simulation of wind turbine with optimal designed trailing-edge serrations
    Zhou, Teng
    Cao, Huijing
    Zhang, Mingming
    Liao, Caicai
    ENERGY, 2022, 243