Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering

被引:114
作者
Tan, KH [1 ]
Chua, CK [1 ]
Leong, KF [1 ]
Naing, MW [1 ]
Cheah, CM [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Prod Engn, Singapore 639798, Singapore
关键词
rapid prototyping; scaffolds; simulated body fluid; hydroxyapatite; poly(ether-ether-ketone);
D O I
10.1243/095441105X9345
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The ability to have precise control over porosity, scaffold shape, and internal pore architecture is critical in tissue engineering. For anchorage-dependent cells, the presence of three-dimensional scaffolds with interconnected pore networks is crucial to aid in the proliferation and reorganization of cells. This research, explored the potential of rapid prototyping techniques such as selective laser sintering to fabricate solvent-free porous composite polymeric scaffolds comprising of different blends of poly(ether-ether-ketone) (PEEK) and hydroxyapatite (HA). The architecture of the scaffolds was created with a scaffold library of cellular units and a corresponding algorithm to generate the structure. Test specimens were produced and characterized by varying the weight percentage, starting with 10 wt% HA to 40 wt% HA, of physically mixed PEEK-HA powder blends. Characterization analyses including porosity microstructure, composition of the scaffolds, bioactivity, and in vitro cell viability of the scaffolds were conducted. The results obtained showed a promising approach in fabricating scaffolds which can produce controlled microarchitecture and higher consistency.
引用
收藏
页码:183 / 194
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1993, THESIS U TEXAS AUSTI
[2]   Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid [J].
Bigi, A ;
Boanini, E ;
Panzavolta, S ;
Roveri, N ;
Rubini, K .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (04) :709-715
[3]   Processing and characterization of porous alumina scaffolds [J].
Bose, S ;
Darsell, J ;
Hosick, HL ;
Yang, L ;
Sarkar, DK ;
Bandyopadhyay, A .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2002, 13 (01) :23-28
[4]   Role of material surfaces in regulating bone and cartilage cell response [J].
Boyan, BD ;
Hummert, TW ;
Dean, DD ;
Schwartz, Z .
BIOMATERIALS, 1996, 17 (02) :137-146
[5]   Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures [J].
Chu, TMG ;
Orton, DG ;
Hollister, SJ ;
Feinberg, SE ;
Halloran, JW .
BIOMATERIALS, 2002, 23 (05) :1283-1293
[6]   Hydroxyapatite implants with designed internal architecture [J].
Chu, TMG ;
Halloran, JW ;
Hollister, SJ ;
Feinberg, SE .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2001, 12 (06) :471-478
[7]  
Chua C.K., 2003, RAPID PROTOTYPING PR
[8]   Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification [J].
C.M. Cheah ;
C.K. Chua ;
K.F. Leong ;
S.W. Chua .
The International Journal of Advanced Manufacturing Technology, 2003, 21 (4) :291-301
[9]   Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: Parametric library and assembly program [J].
C.M. Cheah ;
C.K. Chua ;
K.F. Leong ;
S.W. Chua .
The International Journal of Advanced Manufacturing Technology, 2003, 21 (4) :302-312
[10]  
Curodeau A, 2000, J BIOMED MATER RES, V53, P525, DOI 10.1002/1097-4636(200009)53:5<525::AID-JBM12>3.0.CO