Automatic generation of customized discrete Fourier transform IPs

被引:0
作者
Nordin, G [1 ]
Milder, PA [1 ]
Hoe, JC [1 ]
Püschel, M [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
来源
42nd Design Automation Conference, Proceedings 2005 | 2005年
关键词
discrete Fourier transform; IP; design generator; FPGA;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a parameterized soft core generator for the discrete Fourier transform (DFT). Reusable IN of digital signal processing (DSP) kernels are important time-saving resources in DSP hardware development. Unfortunately, reusable IPs, however optimized, can introduce inefficiencies because they cannot fit the exact requirements of every application context. Given the well-understood and regular computation in DSP kernels, an automatic tool can generate high-quality ready-to-use IPs customized to user-specified cost/performance tradeoffs (beyond basic parameters such as input size and data format). The paper shows that the generated DFT cores can match closely the performance and cost of DFT cores from the Xilinx LogiCore library. Furthermore, the generator can yield DFT cores over a range of different performance/cost tradeoff points that are not available from the library.
引用
收藏
页码:471 / 474
页数:4
相关论文
共 50 条
  • [41] Sampling theorem and discrete Fourier transform on the Riemann sphere
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (04) : 538 - 567
  • [42] Hardware efficient fast computation of the discrete fourier transform
    Cheng, C
    Parhi, KK
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2006, 42 (02): : 159 - 171
  • [43] Large-Scale Discrete Fourier Transform on TPUs
    Lu, Tianjian
    Chen, Yi-Fan
    Hechtman, Blake
    Wang, Tao
    Anderson, John
    IEEE ACCESS, 2021, 9 : 93422 - 93432
  • [44] Discrete Fourier transform for short samples in the presence of noise
    Gol'dshtein, EI
    Li, DV
    MEASUREMENT TECHNIQUES, 2004, 47 (04) : 334 - 338
  • [45] Discrete fractional Fourier transform based on orthogonal projections
    Pei, SC
    Yeh, MH
    Tseng, CC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) : 1335 - 1348
  • [46] APPLICATION OF THE WEIL REPRESENTATION: DIAGONALIZATION OF THE DISCRETE FOURIER TRANSFORM
    Gurevich, Shamgar
    Hadani, Ronny
    NEW DEVELOPMENTS IN LIE THEORY AND GEOMETRY, 2009, 491 : 167 - +
  • [47] Hardware Efficient Fast Computation of the Discrete Fourier Transform
    Chao Cheng
    Keshab K. Parhi
    Journal of VLSI signal processing systems for signal, image and video technology, 2006, 42 : 159 - 171
  • [48] Discrete Fourier Transform and Extended Modified Hermite Polynomials
    Malekar, R. A.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 557 - 563
  • [49] A new sparse matrix analysis of discrete Fourier transform
    Lee, Moon Ho
    Pokhrel, Subash Shree
    Park, Dae Chul
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 482 - 486
  • [50] Recursive sliding discrete Fourier transform with oversampled data
    van der Byl, A.
    Inggs, M. R.
    DIGITAL SIGNAL PROCESSING, 2014, 25 : 275 - 279