Rational torsion in elliptic curves and the cuspidal subgroup

被引:0
作者
Agashe, Amod [1 ]
机构
[1] Florida State Univ, Dept Math, 1017 Acad Way, Tallahassee, FL 32306 USA
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2018年 / 30卷 / 01期
基金
美国国家科学基金会;
关键词
Elliptic curves; torsion subgroup; cuspidal subgroup; EISENSTEIN IDEALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an elliptic curve over Q of square free conductor N that has a rational torsion point of prime order r such that r does not divide 6N. We show that then r divides the order of the cuspidal subgroup C of J(0)(N). If A is optimal, then viewing A as an abelian subvariety of J(0)(N), our proof shows more precisely that r divides the order of A boolean AND C. Also, under the hypotheses above minus the hypothesis that r does not divide N, we show that for some prime p that divides N, the eigenvalue of the Atkin-Lehner involution W-p acting on the newform associated to A is -1.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 20 条
[11]  
KATZ N. M., 1973, Lecture Notes in Mathematics, V350, P69
[12]  
Mazur B., 1978, Inst. Hautes Etudes Sci. Publ. Math, V47, P33, DOI [DOI 10.1007/BF02684339, 10.1007/BF02684339]
[13]   Eisenstein Ideals and the Rational Torsion Subgroups of Modular Jacobian Varieties II [J].
Ohta, Masami .
TOKYO JOURNAL OF MATHEMATICS, 2014, 37 (02) :273-318
[14]  
STEIN W. A., CUSPIDAL SUBGROUP J0
[15]   THE CUSPIDAL GROUP AND SPECIAL VALUES OF L-FUNCTIONS [J].
STEVENS, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (02) :519-550
[16]  
Stevens G., 1982, Progress in Mathematics, V20
[17]   Congruences between modular forms, cyclic isogenies of modular elliptic curves, and integrality of p-adic L-functions [J].
Tang, SL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (02) :837-856
[18]   Multiplicative subgroups of J0(N) and applications to elliptic curves [J].
Vatsal, V .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2005, 4 (02) :281-316
[19]   On Eisenstein ideals and the cuspidal group of J 0(N) [J].
Yoo, Hwajong .
ISRAEL JOURNAL OF MATHEMATICS, 2016, 214 (01) :359-377
[20]   Rational torsion points on Jacobians of modular curves [J].
Yoo, Hwajong .
ACTA ARITHMETICA, 2016, 172 (04) :299-304