Rational torsion in elliptic curves and the cuspidal subgroup

被引:0
作者
Agashe, Amod [1 ]
机构
[1] Florida State Univ, Dept Math, 1017 Acad Way, Tallahassee, FL 32306 USA
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2018年 / 30卷 / 01期
基金
美国国家科学基金会;
关键词
Elliptic curves; torsion subgroup; cuspidal subgroup; EISENSTEIN IDEALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an elliptic curve over Q of square free conductor N that has a rational torsion point of prime order r such that r does not divide 6N. We show that then r divides the order of the cuspidal subgroup C of J(0)(N). If A is optimal, then viewing A as an abelian subvariety of J(0)(N), our proof shows more precisely that r divides the order of A boolean AND C. Also, under the hypotheses above minus the hypothesis that r does not divide N, we show that for some prime p that divides N, the eigenvalue of the Atkin-Lehner involution W-p acting on the newform associated to A is -1.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 20 条
[1]  
Agashe A., 2005, MATH COMPUT, V74, P455
[2]   Conjectures Concerning the Orders of the Torsion Subgroup, the Arithmetic Component Groups, and the Cuspidal Subgroup [J].
Agashe, Amod .
EXPERIMENTAL MATHEMATICS, 2013, 22 (04) :363-366
[3]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[4]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[5]   On the rational cuspidal subgroup and the rational torsion points of J(0)(pq) [J].
Chua, SK ;
Ling, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (08) :2255-2263
[6]  
Cremona J. E., 1997, ALGORITHMS MODULAR E
[7]  
Deligne P., 1973, Lect. Notes Math., V349, P143
[8]  
Diamond DI95 F., 1995, SEMINAR FERMATS LAST, V17, P39
[9]   RATIONAL TORSION ON OPTIMAL CURVES [J].
Dummigan, Neil .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (04) :513-531
[10]   Optimal quotients of modular Jacobians [J].
Emerton, M .
MATHEMATISCHE ANNALEN, 2003, 327 (03) :429-458