DIRICHLET'S PROOF OF THE THREE-SQUARE THEOREM: AN ALGORITHMIC PERSPECTIVE

被引:6
作者
Pollack, Paul [1 ]
Schorn, Peter [2 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Culmannstr 77, CH-8006 Zurich, Switzerland
关键词
RESIDUE; PRIMES; NUMBER; BOUNDS;
D O I
10.1090/mcom/3349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Gauss-Legendre three-square theorem asserts that the positive integers n expressible as a sum of three integer squares are precisely those not of the form 4(k)(8m + 7) for any nonnegative integers k, m. In 1850, Dirichlet gave a beautifully simple proof of this result using only basic facts about ternary quadratic forms. We explain how to turn Dirichlet's proof into an algorithm; if one assumes the Extended Riemann Hypothesis (ERH), there is a random algorithm for expressing n = x(2)+y(2)+z(2), where the expected number of bit operations is O((lgn)(2)(lg lgn)(-1) . M(lgn)). Here, M(r) stands in for the bit complexity of multiplying two r-bit integers. A random algorithm for this problem of similar complexity was proposed by Rabin and Shallit in 1986; however, their analysis depended on both the ERH and on certain conjectures of Hardy-Littlewood type.
引用
收藏
页码:1007 / 1019
页数:13
相关论文
共 27 条
[1]   Explicit bounds for primes in residue classes [J].
Bach, E ;
Sorenson, J .
MATHEMATICS OF COMPUTATION, 1996, 65 (216) :1717-1735
[2]  
BACH E, 1993, MATH COMPUT, V61, P69, DOI 10.1090/S0025-5718-1993-1195432-5
[3]   A generalization of a method of Mordell to ternary quadratic forms [J].
Blackwell, Sarah ;
Durham, Gabriel ;
Thompson, Katherine ;
Treece, Tiffany .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (08) :2081-2105
[4]  
Bosma W., 1996, Journal de Theorie des Nombres de Bordeaux, V8, P283, DOI DOI 10.5802/JTNB.170
[5]  
Brent R. P., 2011, CAMBRIDGE MONOGRAPHS, V18, DOI 10.1017/CBO9780511921698
[6]  
Dickson L. E., 1926, ANN MATH, V28, P333, DOI DOI 10.2307/1968378
[7]  
Dickson L E., 1927, B AM MATH SOC, V33, P63
[8]   Quaternary quadratic forms representing all integers. [J].
Dickson, LE .
AMERICAN JOURNAL OF MATHEMATICS, 1927, 49 :39-56
[9]  
Eisenbrand F, 2001, LECT NOTES COMPUT SC, V2146, P32
[10]   Faster Integer Multiplication [J].
Fuerer, Martin .
STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, :57-66