On Fourier Series on the Torus and Fourier Transforms

被引:0
作者
Trigub, R. M. [1 ]
机构
[1] Donetsk Natl Univ, UA-83114 Donetsk, Ukraine
关键词
Fourier series of a measure on the torus T-d and functions from L-1 (T-d); variation of a measure; Wiener Banach algebras; positive definite functions; exponential entire functions; (C; 1)-means of Fourier series; Vitali variation; Banach-Alaoglu theorem;
D O I
10.1134/S0001434621110134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The question of the representability of a continuous function on R-d in the form of the Fourier integral of a finite Borel complex-valued measure on R-d is reduced in this article to the same question for a simple function. This simple function is determined by the values of the given function on the integer lattice R-d d. For d = 1, this result is already known: it is an inscribed polygonal line. The article also describes applications of the obtained theorems to multiple trigonometric Fourier series.
引用
收藏
页码:767 / 772
页数:6
相关论文
共 9 条
[1]  
Bari N.K., 1961, TRIGONOMETRIC SERIES
[2]  
Feller W., 1971, An Introduction to Probability Theory and Its Applications, V2
[3]  
Goldberg R., 1970, J APPROXIMATION THEO, V3, P149, DOI DOI 10.1016/0021-9045(70)90023-7
[4]  
Grafakos L, 2009, GRAD TEXTS MATH, V250, P1, DOI [10.1007/978-0-387-09434-2_6, 10.1007/978-0-387-09432-8_1]
[5]   Wiener Algebras and Trigonometric Series in a Coordinated Fashion [J].
Liflyand, E. ;
Trigub, R. .
CONSTRUCTIVE APPROXIMATION, 2021, 54 (02) :185-206
[6]   The Wiener algebra of absolutely convergent Fourier integrals: an overview [J].
Liflyand, E. ;
Samko, S. ;
Trigub, R. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (01) :1-68
[7]  
Makarov B.M., 2011, LECT REAL VARIABLE A
[8]   ABSOLUTE CONVERGENCE OF FOURIER INTEGRALS, SUMMABILITY OF FOURIER-SERIES, AND POLYNOMIAL-APPROXIMATION OF FUNCTIONS ON THE TORUS [J].
TRIGUB, RM .
MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 17 (03) :567-593
[9]  
Trigub RM., 2004, FOURIER ANAL APPROXI, DOI [10.1007/978-1-4020-2876-2, DOI 10.1007/978-1-4020-2876-2]