Quantitative Scanning Microwave Microscopy of the Evolution of a Live Biological Cell in a Physiological Buffer

被引:24
作者
Jin, Xin [1 ]
Farina, Marco [2 ]
Wang, Xiaopeng [1 ]
Fabi, Gianluca [2 ]
Cheng, Xuanhong [3 ,4 ]
Hwang, James C. M. [1 ]
机构
[1] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA
[2] Marche Polytech Univ, Dept Informat Engn, I-60131 Ancona, Italy
[3] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[4] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
关键词
Biological cells; dielectric characterization; electromagnetic modeling; microwave imaging; scanning probe microscopy; FORCE MICROSCOPY; LINES;
D O I
10.1109/TMTT.2019.2941850
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article reports the first quantitative characterization by scanning microwave microscopy (SMM) of a live cell in its physiological buffer. The challenges for quantitative SMM of soft matter in liquid were overcome mainly by characterizing the probe-sample interaction through multiscale finite-element full-wave electromagnetic simulation of not only the probe tip but also the probe body and holder. Using quantitative SMM, the relative permittivity of the center of a live L6 cell on the top of its nucleus was determined to be, (32 +/- 6)- j(20 +/- 4), which was in general agreement with the literature and simple estimation. Moreover, taking advantage of the noninvasiveness and subsurface sensitivity of SMM, it was used to monitor the physiological condition of the cell for hours. The results showed that the gradual shrinking of the cell footprint did not impact cell vitality significantly. These results implied that SMM could be a valuable technique for label-free noninvasive characterization of subcellular structures in a live cell, as well as its physio-pathological conditions.
引用
收藏
页码:5438 / 5445
页数:8
相关论文
共 25 条
[1]  
BEGUM N, 1990, J BIOL CHEM, V265, P11936
[2]   Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy [J].
Chiara Biagi, Maria ;
Fabregas, Rene ;
Gramse, Georg ;
Van Der Hofstadt, Marc ;
Juarez, Antonio ;
Kienberger, Ferry ;
Fumagalli, Laura ;
Gomila, Gabriel .
ACS NANO, 2016, 10 (01) :280-288
[3]   An interferometric scanning microwave microscope and calibration method for sub-fF microwave measurements [J].
Dargent, T. ;
Haddadi, K. ;
Lasri, T. ;
Clement, N. ;
Ducatteau, D. ;
Legrand, B. ;
Tanbakuchi, H. ;
Theron, D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (12)
[4]  
Farina A, 2017, INT CONF CONTR AUTO, P1, DOI 10.1109/ICCAIS.2017.8217557
[5]   Investigation of Fullerene Exposure of Breast Cancer Cells by Time-Gated Scanning Microwave Microscopy [J].
Farina, M. ;
Piacenza, F. ;
De Angelis, F. ;
Mencarelli, D. ;
Morini, A. ;
Venanzoni, G. ;
Pietrangelo, T. ;
Malavolta, M. ;
Basso, A. ;
Provinciali, M. ;
Hwang, J. C. M. ;
Jin, X. ;
Di Donato, A. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (12) :4823-4831
[6]   High Resolution Scanning Microwave Microscopy for Applications in Liquid Environment [J].
Farina, M. ;
Di Donato, A. ;
Mencarelli, D. ;
Venanzoni, G. ;
Morini, A. .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (11) :595-597
[7]   Inverted scanning microwave microscope for in vitro imaging and characterization of biological cells [J].
Farina, Marco ;
Jin, Xin ;
Fabi, Gianluca ;
Pavoni, Eleonora ;
di Donato, Andrea ;
Mencarelli, Davide ;
Morini, Antonio ;
Piacenza, Francesco ;
Al Hadi, Richard ;
Zhao, Yan ;
Ning, Yaqing ;
Pietrangelo, Tiziana ;
Cheng, Xuanhong ;
Hwang, James C. M. .
APPLIED PHYSICS LETTERS, 2019, 114 (09)
[8]   Calibration Protocol for Broadband Near-Field Microwave Microscopy [J].
Farina, Marco ;
Mencarelli, Davide ;
Di Donato, Andrea ;
Venanzoni, Giuseppe ;
Morini, Antonio .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (10) :2769-2776
[9]  
Gao C., 1998, APPL PHYS LETT, V71, P1872
[10]   Electrostatic force microscopy: principles and some applications to semiconductors [J].
Girard, P .
NANOTECHNOLOGY, 2001, 12 (04) :485-490