In Situ Nanomechanics of GaN Nanowires

被引:74
作者
Huang, Jian Yu [1 ]
Zheng, He [2 ,3 ,4 ]
Mao, S. X. [2 ]
Li, Qiming [1 ]
Wang, George T. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Wuhan Univ, Dept Phys, Ctr Electron Microscopy, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Key Lab Acoust & Photon Mat & Devices, Wuhan 430072, Peoples R China
基金
美国国家科学基金会;
关键词
GaN nanowire; nanomechanics; dislocation; plasticity; fracture; in-situ electron microscopy; GALLIUM NITRIDE NANOWIRES; CHEMICAL-VAPOR-DEPOSITION; LIGHT-EMITTING-DIODES; SEMICONDUCTOR NANOWIRES; GROWTH; NANOTUBES; DEFORMATION; NANODEVICES; PLASTICITY; STRENGTH;
D O I
10.1021/nl200002x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The deformation, fracture mechanisms, and the fracture strength of individual GaN nanowires were measured in real time using a transmission electron microscope scanning probe microscope (TEM-SPM) platform. Surface mediated plasticity, such as dislocation nucleation from a free surface and plastic deformation between the SPM probe (the punch) and the nanowire contact surface were observed in situ. Although local plasticity was observed frequently, global plasticity was not observed, indicating the overall brittle nature of this material. Dislocation nucleation and propagation is a precursor before the fracture event, but the fracture surface shows brittle characteristic. The fracture surface is not straight but kinked at (10-10) or (10-11) planes. Dislocations are generated at a stress near the fracture strength of the nanowire, which ranges from 0.21 to 1.76 GPa. The results assess the mechanical properties of GaN nanowires and may provide important insight into the design of GaN nanowire devices for electronic and optoelectronic applications.
引用
收藏
页码:1618 / 1622
页数:5
相关论文
共 37 条
[1]   Three-dimensional visualization of surface defects in core-shell nanowires [J].
Arslan, Ilke ;
Talin, A. Alec ;
Wang, George T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (30) :11093-11097
[2]   Large-scale synthesis of single crystalline gallium nitride nanowires [J].
Cheng, GS ;
Zhang, LD ;
Zhu, Y ;
Fei, GT ;
Li, L ;
Mo, CM ;
Mao, YQ .
APPLIED PHYSICS LETTERS, 1999, 75 (16) :2455-2457
[3]   Laser-assisted catalytic growth of single crystal GaN nanowires [J].
Duan, XF ;
Lieber, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (01) :188-189
[4]   Single-crystal gallium nitride nanotubes [J].
Goldberger, J ;
He, RR ;
Zhang, YF ;
Lee, SW ;
Yan, HQ ;
Choi, HJ ;
Yang, PD .
NATURE, 2003, 422 (6932) :599-602
[5]  
GREER JR, 2011, PROG MAT SC IN PRESS
[6]   Nanoscale gold pillars strengthened through dislocation starvation [J].
Greer, Julia R. ;
Nix, William D. .
PHYSICAL REVIEW B, 2006, 73 (24)
[7]   GaN nanowire light emitting diodes based on templated and scalable nanowire growth process [J].
Hersee, S. D. ;
Fairchild, M. ;
Rishinaramangalam, A. K. ;
Ferdous, M. S. ;
Zhang, L. ;
Varangis, P. M. ;
Swartzentruber, B. S. ;
Talin, A. A. .
ELECTRONICS LETTERS, 2009, 45 (01) :75-U24
[8]   The controlled growth of GaN nanowires [J].
Hersee, Stephen D. ;
Sun, Xinyu ;
Wang, Xin .
NANO LETTERS, 2006, 6 (08) :1808-1811
[9]  
Heying B, 1996, APPL PHYS LETT, V68, P643, DOI 10.1063/1.116495
[10]   Gallium nitride nanowire nanodevices [J].
Huang, Y ;
Duan, XF ;
Cui, Y ;
Lieber, CM .
NANO LETTERS, 2002, 2 (02) :101-104