SQL Injection Behavior Mining Based Deep Learning

被引:4
作者
Tang, Peng [1 ]
Qiu, Weidong [1 ]
Huang, Zheng [1 ]
Lian, Huijuan [1 ]
Liu, Guozhen [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Cyber Secur, Shanghai, Peoples R China
来源
ADVANCED DATA MINING AND APPLICATIONS, ADMA 2018 | 2018年 / 11323卷
关键词
SQL injection; Deep learning; MLP; LSTM;
D O I
10.1007/978-3-030-05090-0_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
SQL injection is a common network attack. At present, filtering methods are mainly used to prevent SQL injection, yet risks of incomplete filtering still remains. By deep learning, we detect whether the user behaviors contain SQL injection attacks. The scheme proposed in this article extracts the characteristics of the HTTP traffic in the training sets and uses the deep neural network LSTM and the MLP training data sets, the final predictive capacity of the testing sets is over 99%. The deep neural network uses ReLU as the activation function of the hidden layer, continuously updates the weight parameters through gradient descent algorithm, and finally completes the training within 50 epoch iterations.
引用
收藏
页码:445 / 454
页数:10
相关论文
共 10 条
  • [1] Bhardwaj M., 2015, ADAPTIVE ALGORITHM P, V4, P12
  • [2] Buja G., 2015, IEEE S COMP APPL IND, P60
  • [3] Web Application Security: Threats, Countermeasures, and Pitfalls
    Huang, Hsiu-Chuan
    Zhang, Zhi-Kai
    Cheng, Hao-Wen
    Shieh, Shiuhpyng Winston
    [J]. COMPUTER, 2017, 50 (06) : 81 - 85
  • [4] Kaur N., 2016, INT C COMP SUST GLOB
  • [5] Kumar M., 2014, INT J COMPUT SCI INF, V5, P374
  • [6] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [7] SQLPIL: SQL injection prevention by input labeling
    Masri, Wes
    Sleiman, Sam
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (15) : 2545 - 2560
  • [8] Parvez M, 2015, INT CONF INTERNET, P186, DOI 10.1109/ICITST.2015.7412085
  • [9] Shi CC, 2012, ADV INTEL SOFT COMPU, V127, P245
  • [10] Yuan GQ, 2017, IEEE IJCNN, P3896, DOI 10.1109/IJCNN.2017.7966347