Modulation of membrane curvature by peptides

被引:0
作者
Epand, RM [1 ]
Epand, RF [1 ]
机构
[1] McMaster Univ, Dept Biochem, Hamilton, ON L8N 3Z5, Canada
关键词
membrane fusion; viral fusion peptides; membrane curvature; influenza; hemagglutinin; trichogin;
D O I
10.1002/1097-0282(2000)55:5<358::AID-BIP1009>3.0.CO;2-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fusion of two stable bilayers likely proceeds through intermediates in which the membrane acquires curvature. The insertion of peptides into the membrane will affect its curvature tendency. Studies with a number of small viral fusion peptides indicate that these peptides promote negative curvature at low concentration. This is in accord with the curvature requirements to initiate membrane fusion according to the stalk-pore model. Although a characteristic of fusion peptides, the promotion of negative curvature is only one of several mechanisms by which fusion proteins accelerate the rate of fusion. In addition, the fusion peptide itself, as well as other regions in the viral fusion protein, facilitates membrane fusion by mechanisms that are largely independent of curvature. Leakage of the internal aqueous contents of liposomes is another manifestation of the alteration of membrane properties. Peptides exhibit quite different relative potencies between fusion and leakage that is determined by the structure and mode of insertion of the peptide into the membrane. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:358 / 363
页数:6
相关论文
共 50 条
  • [41] Optical interferometric characterization of membrane curvature in boron doped Si microstructures
    Weigold, JW
    Juan, WH
    Pang, SW
    Borenstein, JT
    MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY III, 1997, 3223 : 142 - 148
  • [42] Mechanisms of Uptake and Membrane Curvature Generation for the Internalization of Silica Nanoparticles by Cells
    Francia, Valentina
    Reker-Smit, Catharina
    Salvati, Anna
    NANO LETTERS, 2022, 22 (07) : 3118 - 3124
  • [43] Role of curvature and phase transition in lipid sorting and fission of membrane tubules
    Roux, A
    Cuvelier, D
    Nassoy, P
    Prost, J
    Bassereau, P
    Goud, B
    EMBO JOURNAL, 2005, 24 (08) : 1537 - 1545
  • [44] Effect of Cholesterol on Biomimetic Membrane Curvature and Coronavirus Fusion Peptide Encapsulation
    Milogrodzka, Izabela
    Pham, Duy Tue Nguyen
    Sama, Gopal R.
    Samadian, Hajar
    Zhai, Jiali
    de Campo, Liliana
    Kirby, Nigel M.
    Scott, Timothy F.
    Holl, Mark M. Banaszak
    van't Hag, Leonie
    ACS NANO, 2023, 17 (09) : 8598 - 8612
  • [45] Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature
    Cheney, Philip P.
    Weisgerber, Alan W.
    Feuerbach, Alec M.
    Knowles, Michelle K.
    MEMBRANES, 2017, 7 (01)
  • [46] Molecular Mechanisms Underlying Caveolin-1 Mediated Membrane Curvature
    Prakash, Shikha
    Malshikare, Hrushikesh
    Sengupta, Durba
    JOURNAL OF MEMBRANE BIOLOGY, 2022, 255 (2-3) : 225 - 236
  • [47] Shiga Toxin Induces Lipid Compression: A Mechanism for Generating Membrane Curvature
    Watkins, Erik B.
    Majewski, Jaroslaw
    Chi, Eva Y.
    Gao, Haifei
    Florent, Jean-Claude
    Johannes, Ludger
    NANO LETTERS, 2019, 19 (10) : 7365 - 7369
  • [48] Membrane curvature during peroxisome fission requires Pex11
    Opalinski, Lukasz
    Kiel, Jan A. K. W.
    Williams, Chris
    Veenhuis, Marten
    van der Klei, Ida J.
    EMBO JOURNAL, 2011, 30 (01) : 5 - 16
  • [49] Membrane curvature underlies actin reorganization in response to nanoscale surface topography
    Lou, Hsin-Ya
    Zhao, Wenting
    Li, Xiao
    Duan, Liting
    Powers, Alexander
    Akamatsu, Matthew
    Santoro, Francesca
    McGuire, Allister F.
    Cui, Yi
    Drubin, David G.
    Cui, Bianxiao
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (46) : 23143 - 23151
  • [50] Molecular Mechanisms Underlying Caveolin-1 Mediated Membrane Curvature
    Shikha Prakash
    Hrushikesh Malshikare
    Durba Sengupta
    The Journal of Membrane Biology, 2022, 255 : 225 - 236