Nonvariational and singular double phase problems for the Baouendi-Grushin operator

被引:8
作者
Bahrouni, Anouar [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Repovs, Dusan D. [5 ,6 ,7 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir 5019, Tunisia
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Romanian Acad, Simion Stoilow Inst Math, POB 1-764, Bucharest 014700, Romania
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[7] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Baouendi-Grushin operator; Double phase problem; Singular term; Existence of solutions; VARIABLE GROWTH; EXISTENCE; EQUATIONS; THEOREMS; SYSTEMS; SPACES;
D O I
10.1016/j.jde.2021.09.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a new double phase Baouendi-Grushin type operator with variable coefficients. We give basic properties of the corresponding functions space and prove a compactness result. In the second part, using topological argument, we prove the existence of weak solutions of some nonvariational problems in which this new operator is present. The present paper extends and complements some of our previous contributions related to double phase anisotropic variational integrals. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:645 / 666
页数:22
相关论文
共 35 条
[1]   SINGULAR DOUBLE-PHASE SYSTEMS WITH VARIABLE GROWTH FOR THE BAOUENDI-GRUSHIN OPERATOR [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) :4283-4296
[2]   Double phase problems with variable growth and convection for the Baouendi-Grushin operator [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06)
[3]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[4]   A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2018, 31 (04) :1516-1534
[5]   Existence and nonexistence of solutions for p(x)-curl systems arising in electromagnetism [J].
Bahrouni, Anouar ;
Repovs, Dusan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (02) :292-301
[6]   DISCONTINUOUS EQUILIBRIUM SOLUTIONS AND CAVITATION IN NON-LINEAR ELASTICITY [J].
BALL, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 306 (1496) :557-611
[7]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[8]  
BAOUENDI MS, 1967, B SOC MATH FR, V95, P45
[9]   Lipschitz Bounds and Nonuniform Ellipticity [J].
Beck, Lisa ;
Mingione, Giuseppe .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (05) :944-1034
[10]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287