Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery

被引:59
作者
Chen, Min [1 ,2 ,3 ]
Xiang, Xingde [1 ,2 ,3 ]
Chen, Dongrui [1 ,2 ,3 ]
Liao, Youhao [1 ,2 ,3 ]
Huang, Qiming [1 ,2 ,3 ]
Li, Weishan [1 ,2 ,3 ]
机构
[1] S China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Normal Univ, Guangdong Higher Educ Inst, Key Lab Electrochem Technol Energy Storage & Powe, Guangzhou 510006, Guangdong, Peoples R China
[3] S China Normal Univ, Engn Res Ctr Mat & Technol Electrochem Energy Sto, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Layered lithium-rich oxide; Hierarchically porous structure; Cathode; Lithium ion battery; Rate capability; Cyclic stability; ELECTROCHEMICAL PERFORMANCE; RATE CAPABILITY; HIGH-CAPACITY; COMPOSITE CATHODE; LI; STORAGE; STABILITY; NANORODS; ANODE;
D O I
10.1016/j.jpowsour.2015.01.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A hierarchically porous layered lithium-rich oxide, 0.5Li(2)MnO(3)center dot 0.5LiMn(1/3)Ni(1/3)Co(1/3)O(2), is synthesized by co-precipitation of metal oxalates with an assistance of a moderate polyethylene glycol (PEG2000). The morphology and crystal structure of the product are characterized by scanning electron microscope, transmission electron microscopy and X-ray diffraction, and its performance as cathode of lithium ion battery is evaluated with charge/discharge tests. It is found that the as-synthesized oxide exhibits excellent rate capability and cyclic stability: delivering an initial discharge capacity of 262 mAh g(-1) at 0.1C (1C = 250 mA g(-1)) and 135 mAh g(-1) at 4C, and possessing a capacity retention of 83% after 200 cycles at 4C. These performances can be attributed to the unique structure of the as-synthesized oxide: uniform secondary microspheres of about 10 mu m, which is composed of uniform primary microparticles of about 2 mu m, and hierarchically porous structure with pores distributed among primary and secondary particles. The hierarchically porous structure provides large reaction sites for lithium ion insertion/extraction and large space to buffer the volume change during cycling, leading to the excellent rate capability and cyclic stability of the as-synthesized oxide. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 48 条
  • [1] Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special
    Anh Vu
    Qian, Yuqiang
    Stein, Andreas
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (09) : 1056 - 1085
  • [2] Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2
    Armstrong, A. Robert
    Holzapfel, Michael
    Novak, Petr
    Johnson, Christopher S.
    Kang, Sun-Ho
    Thackeray, Michael M.
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) : 8694 - 8698
  • [3] Enhanced Li Storage Performance of LiNi0.5Mn1.5O4-Coated 0.4Li2MnO3•0.6LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Li-Ion Batteries
    Chen, Yufang
    Xie, Kai
    Zheng, Chunman
    Ma, Zhongyun
    Chen, Zhongxue
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (19) : 16888 - 16894
  • [4] Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures
    Croy, J. R.
    Kang, S. -H.
    Balasubramanian, M.
    Thackeray, M. M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (10) : 1063 - 1066
  • [5] A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials
    Fey, George Ting-Kuo
    Huang, Kai-Pin
    Kao, Hsien-Ming
    Li, Wen-Hsien
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2810 - 2818
  • [6] Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
    Gu, Meng
    Belharouak, Ilias
    Zheng, Jianming
    Wu, Huiming
    Xiao, Jie
    Genc, Arda
    Amine, Khalil
    Thevuthasan, Suntharampillai
    Baer, Donald R.
    Zhang, Ji-Guang
    Browning, Nigel D.
    Liu, Jun
    Wang, Chongmin
    [J]. ACS NANO, 2013, 7 (01) : 760 - 767
  • [7] Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions
    Guo, Mingyu
    Pitet, Louis M.
    Wyss, Hans M.
    Vos, Matthijn
    Dankers, Patricia Y. W.
    Meijer, E. W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) : 6969 - 6977
  • [8] Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries
    He, Yang
    Huang, Ling
    Cai, Jin-Shu
    Zheng, Xiao-Mei
    Sun, Shi-Gang
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (03) : 1140 - 1144
  • [9] Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5)
    Hy, Sunny
    Felix, Felix
    Rick, John
    Su, Wei-Nien
    Hwang, Bing Joe
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (03) : 999 - 1007
  • [10] A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment
    Ito, Atsushi
    Li, Decheng
    Ohsawa, Yasuhiko
    Sato, Yuichi
    [J]. JOURNAL OF POWER SOURCES, 2008, 183 (01) : 344 - 346