COMPUTER-AIDED GLEASON GRADING OF PROSTATE CANCER HISTOPATHOLOGICAL IMAGES USING TEXTON FORESTS

被引:46
作者
Khurd, Parmeshwar [1 ]
Bahlmann, Claus [1 ]
Maday, Peter [1 ]
Kamen, Ali [1 ]
Gibbs-Strauss, Summer [2 ]
Genega, Elizabeth M. [2 ]
Frangioni, John V. [2 ]
机构
[1] Siemens Corp Res, Princeton, NJ 08540 USA
[2] Beth Israel Deaconess Med Ctr, Boston, MA USA
来源
2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2010年
关键词
Gleason grading; prostate cancer; texture classification;
D O I
10.1109/ISBI.2010.5490096
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The Gleason score is the single most important prognostic indicator for prostate cancer candidates and plays a significant role in treatment planning. Histopathological imaging of prostate tissue samples provides the gold standard for obtaining the Gleason score, but the manual assignment of Gleason grades is a labor-intensive and error-prone process. We have developed a texture classification system for automatic and reproducible Gleason grading. Our system characterizes the texture in images belonging to a tumor grade by clustering extracted filter responses at each pixel into textons (basic texture elements). We have used random forests to cluster the filter responses into textons followed by the spatial pyramid match kernel in conjunction with an SVM classifier. We have demonstrated the efficacy of our system in distinguishing between Gleason grades 3 and 4.
引用
收藏
页码:636 / 639
页数:4
相关论文
共 14 条
[1]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[2]   Automated grading of prostate cancer using architectural and textural image features [J].
Doyle, Scott ;
Hwang, Mark ;
Shah, Kinsuk ;
Madabhushi, Anant ;
Feldman, Michael ;
Tomaszeweski, John .
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, :1284-+
[3]   Prostate MR Imaging: Tissue Characterization with Pharmacokinetic Volume and Blood Flow Parameters and Correlation with Histologic Parameters [J].
Franiel, Tobias ;
Luedemann, Lutz ;
Rudolph, Birgit ;
Rehbein, Hagen ;
Stephan, Carsten ;
Taupitz, Matthias ;
Beyersdorff, Dirk .
RADIOLOGY, 2009, 252 (01) :101-108
[4]  
FREUND Y, 2007, NIPS, P255
[5]   Automatic Classification for Pathological Prostate Images Based on Fractal Analysis [J].
Huang, Po-Whei ;
Lee, Cheng-Hsiung .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (07) :1037-1050
[6]  
Lazebnik S., 2006, P IEEE COMPUTER SOC, P2169, DOI 10.1109/CVPR.2006.68
[7]  
Moosmann F., 2006, NIPS, P985
[8]   Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology [J].
Naik, Shivang ;
Doyle, Scott ;
Agner, Shannon ;
Madabhushi, Anant ;
Feldman, Michael ;
Tomaszewski, John .
2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, :284-+
[9]  
OU Y, 2009, MED IMAGE ANAL, V28, P1037
[10]  
Shotton J, 2008, P IEEE C COMP VIS PA