Concentrated Differentially Private Federated Learning With Performance Analysis

被引:20
作者
Hu, Rui [1 ]
Guo, Yuanxiong [2 ]
Gong, Yanmin [1 ]
机构
[1] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX 78249 USA
[2] Univ Texas San Antonio, Dept Informat Syst & Cyber Secur, San Antonio, TX 78249 USA
来源
IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY | 2021年 / 2卷
基金
美国国家科学基金会;
关键词
Collaborative work; Servers; Privacy; Data models; Computational modeling; Training; Convergence; Federated learning; security and privacy; convergence analysis; zero-concentrated differential privacy; ATTACKS;
D O I
10.1109/OJCS.2021.3099108
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning engages a set of edge devices to collaboratively train a common model without sharing their local data and has advantage in user privacy over traditional cloud-based learning approaches. However, recent model inversion attacks and membership inference attacks have demonstrated that shared model updates during the interactive training process could still leak sensitive user information. Thus, it is desirable to provide rigorous differential privacy (DP) guarantee in federated learning. The main challenge to providing DP is to maintain high utility of federated learning model with repeatedly introduced randomness of DP mechanisms, especially when the server is not fully trusted. In this paper, we investigate how to provide DP to the most widely adopted federated learning scheme, federated averaging. Our approach combines local gradient perturbation, secure aggregation, and zero-concentrated differential privacy (zCDP) for better utility and privacy protection without a trusted server. We jointly consider the performance impacts of randomnesses introduced by the DP mechanism, client sampling and data subsampling in our approach, and theoretically analyze the convergence rate and end-to-end DP guarantee with non-convex loss functions. We also demonstrate that our proposed method has good utility-privacy trade-off through extensive numerical experiments on the real-world dataset.
引用
收藏
页码:276 / 289
页数:14
相关论文
共 50 条
  • [41] Optimal Contract Design for Efficient Federated Learning With Multi-Dimensional Private Information
    Ding, Ningning
    Fang, Zhixuan
    Huang, Jianwei
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (01) : 186 - 200
  • [42] DPFLA: Defending Private Federated Learning Against Poisoning Attacks
    Feng, Xia
    Cheng, Wenhao
    Cao, Chunjie
    Wang, Liangmin
    Sheng, Victor S.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (04) : 1480 - 1491
  • [43] A Novel Framework for the Analysis and Design of Heterogeneous Federated Learning
    Wang, Jianyu
    Liu, Qinghua
    Liang, Hao
    Gauri, Joshi
    Poor, H. Vincent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5234 - 5249
  • [44] Adversarial Node Placement in Decentralized Federated Learning: Maximum Spanning-Centrality Strategy and Performance Analysis
    Piaseczny, Adam
    Ruzomberka, Eric
    Parasnis, Rohit
    Brinton, Christopher G.
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 45 - 60
  • [45] Utility Fairness for the Differentially Private Federated-Learning-Based Wireless IoT Networks
    Alvi, Sheeraz A.
    Hong, Yi
    Durrani, Salman
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19): : 19398 - 19413
  • [46] Differentially Private Federated Clustering Over Non-IID Data
    Li, Yiwei
    Wang, Shuai
    Chi, Chong-Yung
    Quek, Tony Q. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6705 - 6721
  • [47] Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis
    Ferrag, Mohamed Amine
    Friha, Othmane
    Maglaras, Leandros
    Janicke, Helge
    Shu, Lei
    IEEE ACCESS, 2021, 9 : 138509 - 138542
  • [48] Mobility Accelerates Learning: Convergence Analysis on Hierarchical Federated Learning in Vehicular Networks
    Chen, Tan
    Yan, Jintao
    Sun, Yuxuan
    Zhou, Sheng
    Gunduz, Deniz
    Niu, Zhisheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 1657 - 1673
  • [49] Semi-Federated Learning: Convergence Analysis and Optimization of a Hybrid Learning Framework
    Zheng, Jingheng
    Ni, Wanli
    Tian, Hui
    Gunduz, Deniz
    Quek, Tony Q. S.
    Han, Zhu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9438 - 9456
  • [50] Differentially Private Federated Learning in Edge Networks: The Perspective of Noise Reduction
    Li, Yiwei
    Wang, Shuai
    Chi, Chong-Yung
    Quek, Tony Q. S.
    IEEE NETWORK, 2022, 36 (05): : 167 - 172