A Model Predictive Approach for Voltage Support in Microgrids using Energy Storage Systems

被引:0
作者
Bhujel, Niranjan [1 ]
Rai, Astha [1 ]
Hansen, Timothy M. [1 ]
Tonkoski, Reinaldo [1 ]
Tamrakar, Ujjwol [2 ]
机构
[1] South Dakota State Univ, Brookings, SD 57007 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM) | 2021年
基金
美国国家科学基金会;
关键词
Voltage control; voltage support; model predictive control; optimal control; microgrids;
D O I
10.1109/PESGM46819.2021.9638037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low voltage microgrid systems are characterized by high sensitivity to both active and reactive power for voltage support. Also, the operational conditions of microgrids connected to active distribution systems are time-varying. Thus, the ideal controller to provide voltage support must be flexible enough to handle technical and operational constraints. This paper proposes a model predictive control (MPC) approach to provide dynamic voltage support using energy storage systems. This approach uses a simplified predictive model of the system along with operational constraints to solve an online finite-horizon optimization problem. Control signals are then computed such that the defined cost function is minimized. By proper selection of MPC weighting parameters, the quality of service provided can be adjusted to achieve the desired performance. A simulation study in Matlab/Simulink validates the proposed approach for a simplified version of a 100 kVA, 208 V microgrid using typical parameters. Results show that performance of the voltage support can be adjusted depending on the choice of weight and constraints of the controller.
引用
收藏
页数:5
相关论文
共 12 条
  • [1] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [2] [Anonymous], 2013, 2013 15 EUR C POW EL
  • [3] Bhattarai Bishnu, 2018, 2018 IEEE Power & Energy Society General Meeting (PESGM), DOI 10.1109/PESGM.2018.8586473
  • [4] Microgrid Stability Definitions, Analysis, and Examples
    Farrokhabadi, Mostafa
    Lagos, Dimitris
    Wies, Richard W.
    Paolone, Mario
    Liserre, Marco
    Meegahapola, Lasantha
    Kabalan, Mahmoud
    Hajimiragha, Amir H.
    Peralta, Dario
    Elizondo, Marcelo A.
    Schneider, Kevin P.
    Canizares, Claudio A.
    Tuffner, Francis K.
    Reilly, Jim
    Simpson-Porco, John W.
    Nasr, Ehsan
    Fan, Lingling
    Mendoza-Araya, Patricio A.
    Tonkoski, Reinaldo
    Tamrakar, Ujjwol
    Hatziargyriou, Nikos
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 13 - 29
  • [5] Perdikaris George A., 1991, Discrete-Time Systems, P139, DOI DOI 10.1007/978-94-015-7929-23
  • [6] Rawlings J. B., 2017, Model predictive control: Theory, computation, and design, V2
  • [7] Sarkar SK, 2017, 2017 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT 2017)
  • [8] A Model Predictive Power Control Method for PV and Energy Storage Systems With Voltage Support Capability
    Shan, Yinghao
    Hu, Jiefeng
    Guerrero, Josep M.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1018 - 1029
  • [9] Voltage Stabilization in Microgrids via Quadratic Droop Control
    Simpson-Porco, John W.
    Dorfler, Florian
    Bullo, Francesco
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (03) : 1239 - 1253
  • [10] Optimization-Based Fast-Frequency Estimation and Control of Low-Inertia Microgrids
    Tamrakar, Ujjwol
    Copp, David A.
    Nguyen, Tu
    Hansen, Timothy M.
    Tonkoski, Reinaldo
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2021, 36 (02) : 1459 - 1468