Sinsy: A Deep Neural Network-Based Singing Voice Synthesis System

被引:18
|
作者
Hono, Yukiya [1 ]
Hashimoto, Kei [1 ,2 ]
Oura, Keiichiro [2 ]
Nankaku, Yoshihiko [3 ]
Tokuda, Keiichi [4 ]
机构
[1] Nagoya Inst Technol, Comp Sci, Nagoya, Aichi 4668555, Japan
[2] Nagoya Inst Technol, Comp Sci & Engn, Nagoya, Aichi 4668555, Japan
[3] Nagoya Inst Technol, Dept Elect & Elect Engn, Nagoya, Aichi 4668555, Japan
[4] Nagoya Inst Technol, Elect & Elect Engn, Nagoya, Aichi 4668555, Japan
关键词
Acoustics; Hidden Markov models; Feature extraction; Training; Predictive models; Music; Training data; Automatic pitch correction; neural network; singing voice synthesis; timing modeling; vibrato modeling;
D O I
10.1109/TASLP.2021.3104165
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents Sinsy, a deep neural network (DNN)-based singing voice synthesis (SVS) system. In recent years, DNNs have been utilized in statistical parametric SVS systems, and DNN-based SVS systems have demonstrated better performance than conventional hidden Markov model-based ones. SVS systems are required to synthesize a singing voice with pitch and timing that strictly follow a given musical score. Additionally, singing expressions that are not described on the musical score, such as vibrato and timing fluctuations, should be reproduced. The proposed system is composed of four modules: a time-lag model, a duration model, an acoustic model, and a vocoder, and singing voices can be synthesized taking these characteristics of singing voices into account. To better model a singing voice, the proposed system incorporates improved approaches to modeling pitch and vibrato and better training criteria into the acoustic model. In addition, we incorporated PeriodNet, a non-autoregressive neural vocoder with robustness for the pitch, into our systems to generate a high-fidelity singing voice waveform. Moreover, we propose automatic pitch correction techniques for DNN-based SVS to synthesize singing voices with correct pitch even if the training data has out-of-tune phrases. Experimental results show our system can synthesize a singing voice with better timing, more natural vibrato, and correct pitch, and it can achieve better mean opinion scores in subjective evaluation tests.
引用
收藏
页码:2803 / 2815
页数:13
相关论文
共 50 条
  • [11] SINGING VOICE SYNTHESIS BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Hono, Yukiya
    Hashimoto, Kei
    Oura, Keiichiro
    Nankaku, Yoshihiko
    Tokuda, Keiichi
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6955 - 6959
  • [12] Domain Adversarial Neural Network-Based Intrusion Detection System for In-Vehicle Network Variant Attacks
    Wei, Jingwen
    Chen, Ye
    Lai, Yingxu
    Wang, Yuhang
    Zhang, Zhaoyi
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (11) : 2547 - 2551
  • [13] Neural network-based system identification and controller synthesis for an industrial sewing machine
    Kim, IH
    Fok, S
    Fregene, K
    Lee, DH
    Oh, TS
    Wang, DWL
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2004, 2 (01) : 83 - 91
  • [14] Deep Hybrid Neural Network-Based Channel Equalization in Visible Light Communication
    Miao, Pu
    Chen, Gaojie
    Cumanan, Kanapathippillai
    Yao, Yu
    Chambers, Jonathon A.
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1593 - 1597
  • [15] Singing Voice Synthesis System for Carnatic Music
    Rajan, Ragesh M.
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 831 - 835
  • [16] Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery
    Kim, Samuel
    Lu, Peter Y.
    Mukherjee, Srijon
    Gilbert, Michael
    Jing, Li
    Ceperic, Vladimir
    Soljacic, Marin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 4166 - 4177
  • [17] A HMM-based Mandarin Chinese Singing Voice Synthesis System
    Li, Xian
    Wang, Zengfu
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2016, 3 (02) : 192 - 202
  • [18] A HMM-based Mandarin Chinese Singing Voice Synthesis System
    Xian Li
    Zengfu Wang
    IEEE/CAAJournalofAutomaticaSinica, 2016, 3 (02) : 192 - 202
  • [19] A corpus-based concatenative Mandarin singing voice synthesis system
    Zhou, Shu-Sen
    Chen, Qing-Cai
    Wang, Dan-Dan
    Yang, Xiao-Hong
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 2695 - 2699
  • [20] Deep Convolutional Neural Network-Based Detector for Index Modulation
    Wang, Tengjiao
    Yang, Fang
    Song, Jian
    Han, Zhu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (10) : 1705 - 1709