INFINITE RESONANT SOLUTIONS AND TURNING POINTS IN A PROBLEM WITH UNBOUNDED BIFURCATION

被引:11
作者
Arrieta, J. M. [1 ]
Pardo, R. [1 ]
Rodriguez-Bernal, A. [1 ,2 ]
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 09期
关键词
Bifurcation from infinity; nonlinear boundary conditions; Steklov eigenvalues; turning points; resonant solutions; BOUNDARY-VALUE-PROBLEMS; EQUILIBRIA;
D O I
10.1142/S021812741002743X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an elliptic equation -Delta u + u = 0 with nonlinear boundary conditions partial derivative u/partial derivative n = lambda u + g(lambda, x, u), where (g(lambda, x, s))/s -> 0, as vertical bar s vertical bar -> infinity. In [Arrieta et al., 2007, 2009] the authors proved the existence of unbounded branches of solutions near a Steklov eigenvalue of odd multiplicity and, among other things, provided tools to decide whether the branch is subcritical or supercritical. In this work, we give conditions on the nonlinearity, guaranteeing the existence of a bifurcating branch which is neither subcritical nor supercritical, having an infinite number of turning points and an infinite number of resonant solutions.
引用
收藏
页码:2885 / 2896
页数:12
相关论文
共 8 条
[1]   Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity [J].
Arrieta, Jose M. ;
Pardo, Rosa ;
Rodriguez-Bernal, Anibal .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 :225-252
[2]   Equilibria and global dynamics of a problem with bifurcation from infinity [J].
Arrieta, Jose M. ;
Pardo, Rosa ;
Rodriguez-Bernal, Anibal .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) :2055-2080
[3]   Multiplicity results near the principal eigenvalue for boundary-value problems with periodic nonlinearity [J].
Canada, A. .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (03) :235-241
[4]  
Costa D., 1988, RESULTS MATH, V14, P275, DOI [10.1007/BF03323230, DOI 10.1007/BF03323230]
[5]   On the oscillations of the solution curve for a class of semilinear equations [J].
Galstian, Anahit ;
Korman, Philip ;
Li, Yi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :576-588
[6]  
LANDESMAN EM, 1970, J MATH MECH, V19, P609
[7]  
Rabinowitz P.H., 1971, J. Funct. Anal., V7, P487, DOI 10.1016/0022-1236(71)90030-9
[8]   BIFURCATION FROM INFINITY [J].
RABINOWITZ, PH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (03) :462-475