Lower bounds for invariant statistical models with applications to principal component analysis

被引:1
作者
Wahl, Martin [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2022年 / 58卷 / 03期
关键词
Covariance operator; Principal components; Lower bounds; Van Trees inequality; Fisher information; Equivariant model; Special orthogonal group; Large deviations; EFFICIENT ESTIMATION; FUNCTIONALS; RATES;
D O I
10.1214/21-AIHP1193
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops nonasymptotic information inequalities for the estimation of the eigenspaces of a covariance operator. These results generalize previous lower bounds for the spiked covariance model, and they show that recent upper bounds for models with decaying eigenvalues are sharp. The proof relies on lower bound techniques based on group invariance arguments. These techniques can also be applied to a variety of other statistical models.
引用
收藏
页码:1565 / 1589
页数:25
相关论文
共 57 条
[1]  
Anderson G., 2010, An introduction to random matrices, V118
[2]  
[Anonymous], 2002, Cambridge Studies in Advanced Mathematics, DOI [10.1017/CBO9780511755347, DOI 10.1017/CBO9780511755347]
[3]  
[Anonymous], 2010, Stochastic Modelling and Applied Probability
[4]  
[Anonymous], 2014, Mathematische Statistik
[5]  
[Anonymous], 1983, Multivariate Statistics: A Vector Space Approach
[6]  
Ay N, 2017, ERGEB MATH GRENZGEB, V64, P1, DOI 10.1007/978-3-319-56478-4
[7]  
Bartle R.G., 1995, The Elements of Integration and Lebesgue Measure, DOI [10.1002/9781118164471, DOI 10.1002/9781118164471]
[8]  
Belkin Mikhail, 2018, C LEARNING THEORY, P1348
[9]  
Bhatia R., 1997, MATRIX ANAL SPRINGER, DOI [10.1007/978-1-4612-0653-8, DOI 10.1007/978-1-4612-0653-8]
[10]   Optimal Rates for Regularization of Statistical Inverse Learning Problems [J].
Blanchard, Gilles ;
Muecke, Nicole .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (04) :971-1013