Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress

被引:161
作者
Verslues, PE [1 ]
Zhu, JK
机构
[1] Univ Calif Riverside, Inst Integrat Genome Biol, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
关键词
abiotic stress; abscisic acid (ABA); osmoregulation; reactive oxygen species (ROS); upstream sensing; upstream signalling;
D O I
10.1042/BST0330375
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sensing and signalling events that detect abiotic stress-induced changes in plant water status and initiate downstream stress responses such as ABA (abscisic acid) accumulation and osmoregulation remain uncharacterized in plants. Although conclusive results are lacking, recent results from plants, and analogies to signalling in other organisms, suggest possible mechanisms for sensing altered water status and initial transduction of that signal. Internal signals that act downstream of ABA and modulate stress responses to reflect the type and severity of the stress and the metabolic status of the plant are also not well understood. Two specific types of signalling, sugar sensing and reactive oxygen signalling, are likely to be modulators of ABA response under stress. For both upstream sensing and signalling of plant water status as well as downstream modulation of ABA response, present results suggest several genetic strategies with high potential to increase our understanding of the molecular basis by which plants sense and respond to altered water status.
引用
收藏
页码:375 / 379
页数:5
相关论文
共 53 条
[1]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[2]  
Arenas-Huertero F, 2000, GENE DEV, V14, P2085
[3]   Evidence for a direct link between glutathione biosynthesis and stress fefense gene expression in Arabidopsis [J].
Ball, L ;
Accotto, GP ;
Bechtold, U ;
Creissen, G ;
Funck, D ;
Jimenez, A ;
Kular, B ;
Leyland, N ;
Mejia-Carranza, J ;
Reynolds, H ;
Karpinski, S ;
Mullineaux, PM .
PLANT CELL, 2004, 16 (09) :2448-2462
[4]   MOLECULAR RESPONSES TO WATER-DEFICIT [J].
BRAY, EA .
PLANT PHYSIOLOGY, 1993, 103 (04) :1035-1040
[5]   Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome [J].
Bray, EA .
PLANT CELL AND ENVIRONMENT, 2002, 25 (02) :153-161
[6]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[7]   The ascorbic acid redox state controls guard cell signaling and stomatal movement [J].
Chen, Z ;
Gallie, DR .
PLANT CELL, 2004, 16 (05) :1143-1162
[8]   Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado [J].
Chernys, JT ;
Zeevaart, JAD .
PLANT PHYSIOLOGY, 2000, 124 (01) :343-353
[9]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[10]   ABSCISIC-ACID ACCUMULATION IN SPINACH LEAF SLICES IN THE PRESENCE OF PENETRATING AND NONPENETRATING SOLUTES [J].
CREELMAN, RA ;
ZEEVAART, JAD .
PLANT PHYSIOLOGY, 1985, 77 (01) :25-28