The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells

被引:15
作者
Bock, Robert [1 ,2 ]
Karoliussen, Havard [1 ]
Pollet, Bruno G. [1 ]
Secanell, Marc [3 ]
Seland, Frode [2 ]
Stanier, Dave [3 ]
Burheim, Odne S. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, NO-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, NO-7491 Trondheim, Norway
[3] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2R3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graphitization; CL; PEMFC; Thermal conductivity; CONTACT RESISTANCE; WATER TRANSPORT; EX-SITU; GAS;
D O I
10.1016/j.ijhydene.2018.10.221
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the proton exchange membrane fuel cell (PEMFC) has improved its performance and power density, the efficiency has remained unchanged. With around half the reaction enthalpy released as heat, thermal gradients grow. To improve the understanding of such gradients, PEMFC component thermal conductivity has been increasingly investigated over the last ten years, and the catalyst layer (CL) is one of the components where thermal conductivity values are still scarce. CLs in PEMFC are where the electrochemical reactions occur and most of the heat is released. The thermal conductivity in this region affects the heat distribution significantly within a PEMFC. Thermal conductivities for a graphitized and a non-graphitized CL were measured for compaction pressures in the range of 3 and 23 bar. The graphitized CL has a thermal conductivity of 0.12 +/- 0.05 WK(-1)m(-1), whilst the non-graphitized CL conductivity is 0.061 +/- 0.006 WK(-1)m(-1), both at 10 bar compaction pressure. These results suggest that the graphitization of the catalyst material causes a doubling of the thermal conductivity of the CL. This important finding bridges the very few existing studies. Additionally, a 2D thermal model was constructed to represent the impact of the results on the temperature distribution inside a fuel cell. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1335 / 1342
页数:8
相关论文
共 38 条
[1]   Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1-Experimental study [J].
Ahadi, Mohammad ;
Tam, Mickey ;
Saha, Madhu S. ;
Stumper, Jurgen ;
Bahrami, Majid .
JOURNAL OF POWER SOURCES, 2017, 354 :207-214
[2]  
Bapat CJ, 2007, J HEAT TRAN, V129
[3]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[4]   Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies [J].
Bhaiya, M. ;
Putz, A. ;
Secanell, M. .
ELECTROCHIMICA ACTA, 2014, 147 :294-309
[5]   Thermal Conductivity and Compaction of GDL-MPL Interfacial Composite Material [J].
Bock, R. ;
Shum, A. D. ;
Xiao, X. ;
Karoliussen, H. ;
Seland, F. ;
Zenyuk, I., V ;
Burheim, O. S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) :F514-F525
[6]   Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell [J].
Burheim, O. ;
Vie, P. J. S. ;
Pharoah, J. G. ;
Kjelstrup, S. .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :249-256
[7]   Ageing and thermal conductivity of Porous Transport Layers used for PEM Fuel Cells [J].
Burheim, O. S. ;
Ellila, G. ;
Fairweather, J. D. ;
Labouriau, A. ;
Kjelstrup, S. ;
Pharoah, J. G. .
JOURNAL OF POWER SOURCES, 2013, 221 :356-365
[8]   A calorimetric analysis of a polymer electrolyte fuel cell and the production of H2O2 at the cathode [J].
Burheim, Odne ;
Vie, Preben J. S. ;
Moller-Holst, Steffen ;
Pharoah, Jon ;
Kjelstrup, Signe .
ELECTROCHIMICA ACTA, 2010, 55 (03) :935-942
[9]   Review: PEMFC Materials' Thermal Conductivity and Influence on Internal Temperature Profiles [J].
Burheim, Odne S. .
POLYMER ELECTROLYTE FUEL CELLS 17 (PEFC 17), 2017, 80 (08) :509-525
[10]   A review of the curious case of heat transport in polymer electrolyte fuel cells and the need for more characterisation [J].
Burheim, Odne S. ;
Pharoah, Jon G. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 5 (01) :36-42