Improved detection of differentially represented DNA barcodes for high-throughput clonal phenomics

被引:15
作者
Akimov, Yevhen [1 ]
Bulanova, Daria [1 ,2 ,3 ]
Timonen, Sanna [1 ]
Wennerberg, Krister [1 ,2 ,3 ]
Aittokallio, Tero [1 ,4 ,5 ,6 ]
机构
[1] Univ Helsinki, Inst Mol Med Finland FIMM, HiLIFE, Helsinki, Finland
[2] Univ Copenhagen, BRIC, Copenhagen, Denmark
[3] Univ Copenhagen, Novo Nordisk Fdn Ctr Stem Cell Biol DanStem, Copenhagen, Denmark
[4] Univ Turku, Dept Math & Stat, Turku, Finland
[5] Oslo Univ Hosp, Inst Canc Res, Dept Canc Genet, Oslo, Norway
[6] Univ Oslo, Fac Med, OCBE, Oslo, Norway
基金
芬兰科学院;
关键词
clone tracing; DNA barcoding; fate mapping; lineage tracing; phenomics; EXPRESSION ANALYSIS; STEM-CELLS; REVEALS; HETEROGENEITY; AUTOPHAGY; DYNAMICS; MODEL; FATE;
D O I
10.15252/msb.20199195
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellular DNA barcoding has become a popular approach to study heterogeneity of cell populations and to identify clones with differential response to cellular stimuli. However, there is a lack of reliable methods for statistical inference of differentially responding clones. Here, we used mixtures of DNA-barcoded cell pools to generate a realistic benchmark read count dataset for modelling a range of outcomes of clone-tracing experiments. By accounting for the statistical properties intrinsic to the DNA barcode read count data, we implemented an improved algorithm that results in a significantly lower false-positive rate, compared to current RNA-seq data analysis algorithms, especially when detecting differentially responding clones in experiments with strong selection pressure. Building on the reliable statistical methodology, we illustrate how multidimensional phenotypic profiling enables one to deconvolute phenotypically distinct clonal subpopulations within a cancer cell line. The mixture control dataset and our analysis results provide a foundation for benchmarking and improving algorithms for clone-tracing experiments.
引用
收藏
页数:18
相关论文
共 59 条
[1]  
Acar A, 2019, EXPLOITING EVOLUTION, DOI [10.1101/566950, DOI 10.1101/566950]
[2]  
Akimov Y, 2019, DNA BARCODE GUIDED L, DOI 10.1101/622506
[3]   Control of Lineage-Specific Gene Expression by Functionalized gRNA Barcodes [J].
Al'Khafaji, Aziz M. ;
Deatherage, Daniel ;
Brock, Amy .
ACS SYNTHETIC BIOLOGY, 2018, 7 (10) :2468-2474
[4]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[5]   Detecting differential usage of exons from RNA-seq data [J].
Anders, Simon ;
Reyes, Alejandro ;
Huber, Wolfgang .
GENOME RESEARCH, 2012, 22 (10) :2008-2017
[6]   Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia [J].
Bell, Charles C. ;
Fenne, Katie A. ;
Chan, Yih-Chih ;
Rambow, Florian ;
Yeung, Miriam M. ;
Vassiliadis, Dane ;
Lara, Luis ;
Yeh, Paul ;
Martelotto, Luciano G. ;
Rogiers, Aljosja ;
Kremer, Brandon E. ;
Barbash, Olena ;
Mohammad, Helai P. ;
Johanson, Timothy M. ;
Burr, Marian L. ;
Dhar, Arindam ;
Karpinich, Natalie ;
Tian, Luyi ;
Tyler, Dean S. ;
MacPherson, Laura ;
Shi, Junwei ;
Pinnawala, Nathan ;
Fong, Chun Yew ;
Papenfuss, Anthony T. ;
Grimmond, Sean M. ;
Dawson, Sarah-Jane ;
Allan, Rhys S. ;
Kruger, Ryan G. ;
Vakoc, Christopher R. ;
Goode, David L. ;
Naik, Shalin H. ;
Gilan, Omer ;
Lam, Enid Y. N. ;
Marine, Jean-Christophe ;
Prinjha, Rab K. ;
Dawson, Mark A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Studying clonal dynamics in response to cancer therapy using high-complexity barcoding [J].
Bhang, Hyo-eun C. ;
Ruddy, David A. ;
Radhakrishna, Viveksagar Krishnamurthy ;
Caushi, Justina X. ;
Zhao, Rui ;
Hims, Matthew M. ;
Singh, Angad P. ;
Kao, Iris ;
Rakiec, Daniel ;
Shaw, Pamela ;
Balak, Marissa ;
Raza, Alina ;
Ackley, Elizabeth ;
Keen, Nicholas ;
Schlabach, Michael R. ;
Palmer, Michael ;
Leary, Rebecca J. ;
Chiang, Derek Y. ;
Sellers, William R. ;
Michor, Franziska ;
Cooke, Vesselina G. ;
Korn, Joshua M. ;
Stegmeier, Frank .
NATURE MEDICINE, 2015, 21 (05) :440-U207
[8]   Single-cell mapping of lineage and identity in direct reprogramming [J].
Biddy, Brent A. ;
Kong, Wenjun ;
Kamimoto, Kenji ;
Guo, Chuner ;
Waye, Sarah E. ;
Sun, Tao ;
Morris, Samantha A. .
NATURE, 2018, 564 (7735) :219-+
[9]   Independent filtering increases detection power for high-throughput experiments [J].
Bourgon, Richard ;
Gentleman, Robert ;
Huber, Wolfgang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9546-9551
[10]   Autophagy in stem cells: repair, remodelling and metabolic reprogramming [J].
Boya, Patricia ;
Codogno, Patrice ;
Rodriguez-Muela, Natalia .
DEVELOPMENT, 2018, 145 (04)