The impact of agricultural soil erosion on the global carbon cycle

被引:762
作者
Van Oost, K.
Quine, T. A.
Govers, G.
De Gryze, S.
Six, J.
Harden, J. W.
Ritchie, J. C.
McCarty, G. W.
Heckrath, G.
Kosmas, C.
Giraldez, J. V.
da Silva, J. R. Marques
Merckx, R.
机构
[1] Katholieke Univ Leuven, Phys & Reg Geog Res Grp, B-3001 Heverlee, Belgium
[2] Univ Exeter, Dept Geog, Exeter EX4 4RJ, Devon, England
[3] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[4] US Geol Survey, Menlo Pk, CA 94025 USA
[5] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[6] Univ Aarhus, Dept Agroecol & Environm, Res Ctr Foulum, DK-8830 Tjele, Denmark
[7] Agr Univ Athens, Lab Soils & Agr Chem, Athens 11855, Greece
[8] Univ Cordoba, Dept Agron, E-14080 Cordoba, Spain
[9] Univ Evora, Dept Rural Engn, Inst Ciencias Agr Mediterran, Evora, Portugal
[10] Katholieke Univ Leuven, Div Soil & Water Management, B-3001 Heverlee, Belgium
关键词
D O I
10.1126/science.1145724
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year(-1) to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year(-1) resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.
引用
收藏
页码:626 / 629
页数:4
相关论文
共 29 条
  • [1] The carbon budget in soils
    Amundson, R
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2001, 29 : 535 - 562
  • [2] The crop productivity-erosion relationship: an analysis based on experimental work
    Bakker, MM
    Govers, G
    Rounsevell, MDA
    [J]. CATENA, 2004, 57 (01) : 55 - 76
  • [3] The significance of the erosion-induced terrestrial carbon sink
    Berhe, Asmeret Asefaw
    Harte, John
    Harden, Jennifer W.
    Torn, Margaret S.
    [J]. BIOSCIENCE, 2007, 57 (04) : 337 - 346
  • [4] Boardman J, 1998, J SOIL WATER CONSERV, V53, P46
  • [5] Modelling the role of agriculture for the 20th century global terrestrial carbon balance
    Bondeau, Alberte
    Smith, Pascalle C.
    Zaehle, Soenke
    Schaphoff, Sibyll
    Lucht, Wolfgang
    Cramer, Wolfgang
    Gerten, Dieter
    Lotze-Campen, Hermann
    Mueller, Christoph
    Reichstein, Markus
    Smith, Benjamin
    [J]. GLOBAL CHANGE BIOLOGY, 2007, 13 (03) : 679 - 706
  • [6] CHANGES IN SOIL CARBON INVENTORIES FOLLOWING CULTIVATION OF PREVIOUSLY UNTILLED SOILS
    DAVIDSON, EA
    ACKERMAN, IL
    [J]. BIOGEOCHEMISTRY, 1993, 20 (03) : 161 - 193
  • [7] Dynamic replacement and loss of soil carbon on eroding cropland
    Harden, JW
    Sharpe, JM
    Parton, WJ
    Ojima, DS
    Fries, TL
    Huntington, TG
    Dabney, SM
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (04) : 885 - 901
  • [8] A STRATEGY FOR ESTIMATING THE IMPACT OF CO2 FERTILIZATION ON SOIL CARBON STORAGE
    HARRISON, K
    BROECKER, W
    BONANI, G
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1993, 7 (01) : 69 - 80
  • [9] Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100
    Ito, Akihiko
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (09)
  • [10] A mass balance approach to assess carbon dioxide evolution during erosional events
    Jacinthe, P.A.
    Lal, R.
    [J]. Land Degradation and Development, 2001, 12 (04) : 329 - 339