Efficient Multisensor Localization for the Internet of Things Exploring a new class of scalable localization algorithms

被引:124
作者
Win, Moe Z. [1 ,2 ,3 ,4 ]
Meyer, Florian [5 ,6 ]
Liu, Zhenyu [5 ]
Dai, Wenhan [7 ]
Bartoletti, Stefania [8 ]
Conti, Andrea [5 ,8 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Wireless Informat & Network Sci Lab, Cambridge, MA USA
[3] AT&T Res Labs, Florham Pk, NJ 07748 USA
[4] NASA, Jet Prop Lab, Washington, DC 20546 USA
[5] MIT, Wireless Informat & Network Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] NATO Ctr Maritime Res & Experimentat, La Spezia, Italy
[7] Wireless Informat & Network Sci Lab, Aeronaut & Astronaut, La Spezia, Italy
[8] Univ Ferrara, Ferrara, Italy
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
NAVIGATION; TRACKING; SIGNALS;
D O I
10.1109/MSP.2018.2845907
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the era of the Internet of Things (IoT), efficient localization is essential for emerging mass-market services and applications. IoT devices are heterogeneous in signaling, sensing, and mobility, and their resources for computation and communication are typically limited. Therefore, to enable location awareness in large-scale IoT networks, there is a need for efficient, scalable, and distributed multisensor fusion algorithms. This article presents a framework for designing network localization and navigation (NLN) for the IoT. Multisensor localization and operation algorithms developed within NLN can exploit spatiotemporal cooperation, are suitable for arbitrary, large-network sizes, and only rely on an information exchange among neighboring devices. The advantages of NLN are evaluated in a large-scale IoT network with 500 agents. In particular, because of multisensor fusion and cooperation, the presented network localization and operation algorithms can provide attractive localization performance and reduce communication overhead and energy consumption.
引用
收藏
页码:153 / 167
页数:15
相关论文
共 30 条
  • [1] [Anonymous], 2001, Sequential Monte Carlo methods in practice
  • [2] Bar-Shalom Y., 2004, ESTIMATION APPL TRAC
  • [3] A Mathematical Model for Wideband Ranging
    Bartoletti, Stefania
    Dai, Wenhan
    Conti, Andrea
    Win, Moe Z.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (02) : 216 - 228
  • [4] Boyd L., 2004, CONVEX OPTIMIZATION
  • [5] Network Experimentation for Cooperative Localization
    Conti, Andrea
    Guerra, Matteo
    Dardari, Davide
    Decarli, Nicolo
    Win, Moe Z.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2012, 30 (02) : 467 - 475
  • [6] A Computational Geometry Framework for Efficient Network Localization
    Dai, Wenhan
    Shen, Yuan
    Win, Moe Z.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 1317 - 1339
  • [7] Energy-Efficient Network Navigation Algorithms
    Dai, Wenhan
    Shen, Yuan
    Win, Moe Z.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2015, 33 (07) : 1418 - 1430
  • [8] Distributed Power Allocation for Cooperative Wireless Network Localization
    Dai, Wenhan
    Shen, Yuan
    Win, Moe Z.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2015, 33 (01) : 28 - 40
  • [9] Mathematical evaluation of environmental monitoring estimation error through energy-efficient wireless sensor networks
    Dardari, Davide
    Conti, Andrea
    Buratti, Chiara
    Verdone, Roberto
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2007, 6 (07) : 790 - 802
  • [10] Ranging With Ultrawide Bandwidth Signals in Multipath Environments
    Dardari, Davide
    Conti, Andrea
    Ferner, Ulric
    Giorgetti, Andrea
    Win, Moe Z.
    [J]. PROCEEDINGS OF THE IEEE, 2009, 97 (02) : 404 - 426