The Likelihood-Ratio Test and Efficient Robust Estimation

被引:8
作者
Cohen, Andrea [1 ]
Zach, Christopher [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[2] Toshiba Res, Cambridge, England
来源
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2015年
关键词
RANSAC;
D O I
10.1109/ICCV.2015.263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust estimation of model parameters in the presence of outliers is a key problem in computer vision. RANSAC inspired techniques are widely used in this context, although their application might be limited due to the need of a priori knowledge on the inlier noise level. We propose a new approach for jointly optimizing over model parameters and the inlier noise level based on the likelihood ratio test. This allows control over the type I error incurred. We also propose an early bailout strategy for efficiency. Tests on both synthetic and real data show that our method outperforms the state-of-the-art in a fraction of the time.
引用
收藏
页码:2282 / 2290
页数:9
相关论文
共 23 条
[1]   PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing [J].
Barnes, Connelly ;
Shechtman, Eli ;
Finkelstein, Adam ;
Goldman, Dan B. .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[2]  
Capel D. P., 2005, P BMVC
[3]  
Chum O., 2002, Electronic Proceedings of the 13th British Machine Vision Conference, P623
[4]   Optimal Randomized RANSAC [J].
Chum, Ondrej ;
Matas, Jiri .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (08) :1472-1482
[5]  
Feng C.L., 2003, P INT C DIG IM COMP, P633
[6]  
FENWICK PM, 1994, SOFTWARE PRACT EXPER, V24, P677
[7]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[8]  
Konouchine A., 2005, P GRAPH, V5, P93
[9]   Generalized Sequential Probability Ratio Test for Separate Families of Hypotheses [J].
Li, Xiaoou ;
Liu, Jingchen ;
Ying, Zhiliang .
SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2014, 33 (04) :539-563
[10]  
Matas J, 2005, IEEE I CONF COMP VIS, P1727