New Type Soliton Solutions to Korteweg-de Vries and Benjamin-Bona-Mahony Equations

被引:2
|
作者
Liu Yu [1 ]
机构
[1] Henan Elect Power Res Inst, Zhengzhou 450052, Peoples R China
关键词
COMPACTON SOLUTIONS; EXPLICIT; BBM;
D O I
10.1088/0256-307X/27/9/090201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Korteweg-de Vries equation and the Benjamin-Bona-Mahony equation, and obtain three kinds of new type soliton solutions, i.e. peakon solutions, double-peak (peaked-point and peaked-compacton) soliton solutions. A double solitary wave with blow-up points is also contained.
引用
收藏
页数:4
相关论文
共 5 条
  • [1] Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation
    Estevez, P. G.
    Kuru, S.
    Negro, J.
    Nieto, L. M.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 2031 - 2040
  • [2] New Explicit Solutions For Zakharov-Kuznetsov-Benjamin-Bona-Mahony Equation
    Ren, Yue
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 27 (06): : 2683 - 2690
  • [3] JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS
    Zhang, Zai-Yun
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (9-10): : 1384 - 1394
  • [4] Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations
    Lu, Dianchen
    Seadawy, Aly R.
    Iqbal, Mujahid
    OPEN PHYSICS, 2018, 16 (01): : 896 - 909
  • [5] New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity
    Bulut, Hasan
    Sulaiman, Tukur Abdulkadir
    Baskonus, Haci Mehmet
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (12)