Tailoring the arsenic(III) removal ability from water using metal-organic frameworks via metal exchange-A computational study

被引:2
|
作者
Ortega, Daniela E. [1 ]
Cortes-Arriagada, Diego [2 ]
Garcia-Hernandez, Erwin [3 ]
机构
[1] Univ Bernardo OHiggins, Ctr Integrat Biol & Quim Aplicada CIBQA, Gen Gana 1702, Santiago 8370854, Chile
[2] Univ Tecnol Metropolitana, Programa Inst Fomento Invest Desarrollo & Innovac, 2409 San Joaquin, Santiago, Chile
[3] Tecnol Nacl Mex Campus Zacapoaxtla, Subdirecc Posgrad Invest, Div Mecatron, Zacapoaxtla, Puebla, Mexico
关键词
Adsorption; DFT calculations; Environmental pollution; Chemical engineering; Environmental chemistry; Adsorption energy; GRAPHENE OXIDE; ADSORPTION; PARAMETERS; PERFORMANCE; COMPOSITES; ADSORBENTS; MECHANISM; OXIDATION; ARSENITE; SORPTION;
D O I
10.1016/j.molliq.2022.119167
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Searching and developing efficient adsorbent materials for arsenic removal is critical in water treatment. Recently, Metal-Organic Frameworks (MOFs) have gained attention due to their chemical stability and ability to capture water-soluble arsenic species. Here, we performed a computational chemistry study of the arsenic removal ability by the Zn-based MOF, MFU-4l [Zn4(Td)Zn(Oh)Cl4(BTDD)3], and the effects of metal exchange [M-MFU-4l, where M = Fe(II), Ni(II), Cu(II)]. Our results show that M-MFU-4l based adsorbents promote the inner-sphere surface adsorption of arsenic in a wide range of pH. Metal exchange with Fe(II) species promotes a bidentate arsenic uptake, resulting in the highest adsorption ability compared to the reference system MFU-4l. Energy decomposition analyses (ALMO-EDA) reveal that electrostatic and polarization driving forces dominate the adsorption mechanism, providing a partial orbital overlapping (coordinative bonding). In addition, thermochemical analyses reveal that arsenic adsorption is a spontaneous and exothermic process at room temperature for pristine, Cu(II) and Fe(II)-based MOFs, which are retained in a wide range of operating temperatures (298-1000 K). Finally, solvent effects have a weak influence on the adsorption stability because attractive electrostatic effects overcompensate the solvation destabilization, while the recovery of the adsorbent materials can be straightforwardly reached by treatment with phosphate-based eluents for repetitive cycles of use. Therefore, this study would provide new insights into MOFs application as technology remediation for arsenic removal from water. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Metal-organic frameworks for heavy metal removal from water
    Kobielska, Paulina A.
    Howarth, Ashlee J.
    Farha, Omar K.
    Nayak, Sanjit
    COORDINATION CHEMISTRY REVIEWS, 2018, 358 : 92 - 107
  • [2] Metal-organic frameworks for aquatic arsenic removal
    Wang, C.
    Luan, J.
    Wu, C.
    WATER RESEARCH, 2019, 158 : 370 - 382
  • [3] Removal of inorganic arsenic from water using metal organic frameworks
    Tetiana Davydiuk
    Xiaojian Chen
    Lijin Huang
    Qin Shuai
    X.Chris Le
    Journal of Environmental Sciences, 2020, (11) : 162 - 168
  • [4] Removal of inorganic arsenic from water using metal organic frameworks
    Davydiuk, Tetiana
    Chen, Xiaojian
    Huang, Lijin
    Shuai, Qin
    Le, X. Chris
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2020, 97 : 162 - 168
  • [5] Computational study of metal-organic frameworks
    Laboratory of Computational Chemistry, School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    Huagong Xuebao, 2009, 4 (805-819):
  • [6] Recent Progress in the Removal of Heavy Metal Ions from Water Using Metal-Organic Frameworks
    Shayegan, Hossein
    Ali, Gomaa A. M.
    Safarifard, Vahid
    CHEMISTRYSELECT, 2020, 5 (01): : 124 - 146
  • [7] Fast and efficient heavy metal removal from contaminated water using metal-organic frameworks
    Sun, Daniel
    Peng, Li
    Chaurd, Sandrine
    Reeder, Washington
    Oveisi, Emad
    Queen, Wendy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [8] Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review
    Ahmad, Khalil
    Shah, Habib-Ur-Rehman
    Ashfaq, Muhammad
    Nawaz, Haq
    REVIEWS IN INORGANIC CHEMISTRY, 2022, 42 (02) : 197 - 227
  • [9] Functionalized metal-organic frameworks for heavy metal ion removal from water
    Lam, Iris Tsz Yan
    Choi, Seon-Jin
    Lu, Dong
    Kim, Yoonseob
    NANOSCALE, 2023, 15 (24) : 10189 - 10205
  • [10] Adsorptive removal of pharmaceuticals from water using metal-organic frameworks: A review
    Huang, Lijin
    Shen, Rujia
    Shuai, Qin
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 277