Parabolic induction and Hecke modules in characteristic p for p-adic GLn

被引:18
|
作者
Ollivier, Rachel [1 ]
机构
[1] Univ Versailles St Quentin, Lab Math Versailles, F-78035 Versailles, France
关键词
mod p representations of Hecke algebras and p-adic groups; parabolic induction; integral Bernstein presentation; integral Satake transform; PRINCIPAL SERIES; REPRESENTATIONS; GL(2)(F); ALGEBRA; IWAHORI;
D O I
10.2140/ant.2010.4.701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the simple supersingular modules for the pro-p-Iwahori Hecke algebra H of p-adic GL(n) by proving a conjecture by Vigneras about a mod p numerical Langlands correspondence on the side of the Hecke modules. We define a process of induction for H-modules in characteristic p that reflects the parabolic induction for representations of the p-adic general linear group and explore the semisimplification of the standard nonsupersingular H-modules in light of this process.
引用
收藏
页码:701 / 742
页数:42
相关论文
共 50 条
  • [21] Graded Hecke algebras, constructible sheaves and the p-adic Kazhdan-Lusztig conjecture
    Solleveld, Maarten
    JOURNAL OF ALGEBRA, 2025, 667 : 865 - 910
  • [22] HECKE ALGEBRAS FOR INNER FORMS OF p-ADIC SPECIAL LINEAR GROUPS
    Aubert, Anne-Marie
    Baum, Paul
    Plymen, Roger
    Solleveld, Maarten
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (02) : 351 - 419
  • [23] Towards the Jacquet conjecture on the Local Converse Problem for p-adic GLn
    Jiang, Dihua
    Nien, Chufeng
    Stevens, Shaun
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (04) : 991 - 1007
  • [24] ARE THERE p-ADIC KNOT INVARIANTS?
    Morozov, A. Yu
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 187 (01) : 447 - 454
  • [25] ON REDUCIBILITY OF p-ADIC PRINCIPAL SERIES REPRESENTATIONS OF p-ADIC GROUPS
    Ban, Dubravka
    Hundley, Joseph
    REPRESENTATION THEORY, 2016, 20 : 249 - 262
  • [26] Cocenter of p-adic groups, II: Induction map
    He, Xuhua
    ADVANCES IN MATHEMATICS, 2019, 345 : 972 - 997
  • [28] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [29] p-adic Cohomology
    Kedlaya, Kiran S.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [30] Syntomic cohomology and p-adic regulators for varieties over p-adic fields
    Nekovar, Jan
    Niziol, Wieslawa
    Berger, Laurent
    Deglise, Frederic
    ALGEBRA & NUMBER THEORY, 2016, 10 (08) : 1695 - 1790