Parabolic induction and Hecke modules in characteristic p for p-adic GLn

被引:18
作者
Ollivier, Rachel [1 ]
机构
[1] Univ Versailles St Quentin, Lab Math Versailles, F-78035 Versailles, France
关键词
mod p representations of Hecke algebras and p-adic groups; parabolic induction; integral Bernstein presentation; integral Satake transform; PRINCIPAL SERIES; REPRESENTATIONS; GL(2)(F); ALGEBRA; IWAHORI;
D O I
10.2140/ant.2010.4.701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the simple supersingular modules for the pro-p-Iwahori Hecke algebra H of p-adic GL(n) by proving a conjecture by Vigneras about a mod p numerical Langlands correspondence on the side of the Hecke modules. We define a process of induction for H-modules in characteristic p that reflects the parabolic induction for representations of the p-adic general linear group and explore the semisimplification of the standard nonsupersingular H-modules in light of this process.
引用
收藏
页码:701 / 742
页数:42
相关论文
共 27 条
[1]   MODULAR-REPRESENTATIONS OF GL(2) OF A LOCAL-FIELD - THE ORDINARY, UNRAMIFIED CASE [J].
BARTHEL, L ;
LIVNE, R .
JOURNAL OF NUMBER THEORY, 1995, 55 (01) :1-27
[2]  
Bourbaki N., 1968, ACTUALITES SCI IND
[3]  
Bourbaki N., 1961, ACTUALITES SCI IND, V1290
[4]  
BREUIL C, 2007, MODULO P LANGLANDS C
[5]   Smooth representations of reductive p-adic groups: Structure theory via types [J].
Bushnell, CJ ;
Kutzko, PC .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :582-634
[6]  
Cabanes M, 2004, NEW MATH MONOGRAPHS, V1, DOI DOI 10.1017/CBO9780511542763
[7]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[8]   Types and inductions for modular representations of p-adic groups [J].
Dat, JF .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (01) :1-38
[9]  
GROSSEKLONNE E, 2009, SPECIAL REPRESENTATI
[10]  
HERZIG F, 2010, ARXIV10051713V1