[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源:
PHYSICAL REVIEW E
|
2010年
/
82卷
/
02期
关键词:
CYCLE;
NETWORK;
D O I:
10.1103/PhysRevE.82.021916
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
The response to a knockout of a node is a characteristic feature of a networked dynamical system. Knockout resilience in the dynamics of the remaining nodes is a sign of robustness. Here we study the effect of knockouts for binary state sequences and their implementations in terms of Boolean threshold networks. Besides random sequences with biologically plausible constraints, we analyze the cell cycle sequence of the species Saccharomyces cerevisiae and the Boolean networks implementing it. Comparing with an appropriate null model we do not find evidence that the yeast wildtype network is optimized for high knockout resilience. Our notion of knockout resilience weakly correlates with the size of the basin of attraction, which has also been considered a measure of robustness.