机构:
Univ Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil
Souza, Aparecida D. P.
[1
]
Migon, Helio S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil
Migon, Helio S.
[2
]
机构:
[1] Univ Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil
[2] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, Brazil
binary regression models;
Bayesian residual;
random effect;
mixture of normals;
Markov chain Monte Carlo;
PRIOR DISTRIBUTIONS;
MODELS;
D O I:
10.1080/02664760903031153
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Hong, Zhaoping
Lian, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
机构:
Brigham Young Univ, Dept Psychol, Provo, UT 84602 USABrigham Young Univ, Dept Psychol, Provo, UT 84602 USA
Baldwin, Scott A.
Larson, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
Brigham Young Univ, Dept Psychol, Provo, UT 84602 USA
Brigham Young Univ, Neurosci Ctr, Provo, UT 84602 USABrigham Young Univ, Dept Psychol, Provo, UT 84602 USA