A note on α-redundant vertices in graphs

被引:24
作者
Brandstädt, A
Lozin, VV
机构
[1] Univ Rostock, FB Informat, D-18051 Rostock, Germany
[2] Univ Nizhny Novgorod, Nizhnii Novgorod 603600, Russia
基金
俄罗斯基础研究基金会;
关键词
stable set; stability number; polynomial algorithm; alpha-redundant vertex; P-4; extension;
D O I
10.1016/S0166-218X(00)00239-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex v in a graph G is called alpha -redundant if alpha (G - v) = alpha (C), where alpha (G) stands for the stability number of G, i.e. the maximum size of a subset of pairwise nonadjacent vertices. We describe sufficient conditions for a vertex to be alpha -redundant in terms of some P-4 extensions. This leads to polynomial-time algorithms fur solving the stable set problem giving for an arbitrary input graph either the solution of the problem or a forbidden configuration such as an induced P-5 or an induced banner in the input graph. The algorithms extend and improve a number of previous results on the problem. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 12 条
[1]  
ALEKSEEV VE, 1979, CYBERNET PROBLEMS, V36, P23
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]   On the stability number of claw-free P5-free and more general graphs [J].
Brandstädt, A ;
Hammer, PL .
DISCRETE APPLIED MATHEMATICS, 1999, 95 (1-3) :163-167
[4]   A LINEAR RECOGNITION ALGORITHM FOR COGRAPHS [J].
CORNEIL, DG ;
PERL, Y ;
STEWART, LK .
SIAM JOURNAL ON COMPUTING, 1985, 14 (04) :926-934
[5]  
Gavril F., 1972, SIAM Journal on Computing, V1, P180, DOI 10.1137/0201013
[6]   STABILITY IN CIRCULAR ARC GRAPHS [J].
GOLUMBIC, MC ;
HAMMER, PL .
JOURNAL OF ALGORITHMS, 1988, 9 (03) :314-320
[7]  
HAMMER PL, 1991, 6991 RUTCOR RUTG U
[8]   POLYNOMIALLY SOLVABLE CASES FOR THE MAXIMUM STABLE SET PROBLEM [J].
HERTZ, A .
DISCRETE APPLIED MATHEMATICS, 1995, 60 (1-3) :195-210
[9]  
LOZIN VV, IN PRESS EUROPEAN J
[10]  
MAHADEV NVR, 1990, 902 OR WR SWISS FED