Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump

被引:32
|
作者
Shi Lei [1 ]
Zhang DeSheng [1 ]
Zhao RuiJie [1 ]
Shi WeiDong [1 ]
Jin YongXin [1 ]
机构
[1] Jiangsu Univ, Res Ctr Fluid Machinery Engn & Technol, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
blade tip geometry; tip leakage vortex; cavitation; numerical simulation; high-speed photography; NUMERICAL-ANALYSIS; COMPRESSOR; TURBULENCE; GAP; MECHANISMS; SIMULATION; CLEARANCE; VORTICES; SHAPE;
D O I
10.1007/s11431-017-9046-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance.
引用
收藏
页码:1480 / 1493
页数:14
相关论文
共 50 条
  • [1] Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump
    SHI Lei
    ZHANG DeSheng
    ZHAO RuiJie
    SHI WeiDong
    JIN YongXin
    Science China(Technological Sciences), 2017, 60 (10) : 1480 - 1493
  • [2] Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump
    SHI Lei
    ZHANG DeSheng
    ZHAO RuiJie
    SHI WeiDong
    JIN YongXin
    Science China(Technological Sciences), 2017, (10) : 1480 - 1493
  • [3] Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump
    Lei Shi
    DeSheng Zhang
    RuiJie Zhao
    WeiDong Shi
    YongXin Jin
    Science China Technological Sciences, 2017, 60 : 1480 - 1493
  • [4] A study on tip leakage vortex dynamics and cavitation in axial-flow pump
    Shi, Lei
    Zhang, Desheng
    Jin, Yongxin
    Shi, Weidong
    van Esch, B. P. M.
    FLUID DYNAMICS RESEARCH, 2017, 49 (03)
  • [5] Numerical Analysis of the Effect of Cavitation on the Tip Leakage Vortex in an Axial-Flow Pump
    Zhang, Hu
    Wang, Jun
    Zhang, Desheng
    Shi, Weidong
    Zang, Jianbo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (07)
  • [6] Influence of blade tip rounding on tip leakage vortex cavitation of axial flow pump
    Wu, S. Q.
    Shi, W. D.
    Zhang, D. S.
    Yao, J.
    Cheng, C.
    6TH INTERNATIONAL CONFERENCE ON PUMPS AND FANS WITH COMPRESSORS AND WIND TURBINES (ICPF2013), 2013, 52
  • [8] Tip clearance and tip vortex cavitation in an axial flow pump
    Laborde, R
    Chantrel, P
    Mory, M
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1997, 119 (03): : 680 - 685
  • [9] THE EFFECT OF BLADE TIP GEOMETRY ON THE TIP LEAKAGE FLOW IN AXIAL TURBINE CASCADES
    HEYES, FJG
    HODSON, HP
    DAILEY, GM
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1992, 114 (03): : 643 - 651
  • [10] Effect of blade tip geometry on the tip leakage flow in axial turbine cascades
    Heyes, F.J.G.
    Hodson, H.P.
    Dailey, G.M.
    Journal of Turbomachinery, 1992, 114 (03): : 643 - 651