Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications

被引:52
作者
Gao, Changyong [1 ]
Lin, Zhihua [1 ]
Lin, Xiankun [1 ]
He, Qiang [1 ]
机构
[1] Harbin Inst Technol, Micro Nano Technol Res Ctr, State Key Lab Robot & Syst, Key Lab Microsyst & Microstruct Mfg, 2 Yikuang St, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
biomedical applications; cell membranes; colloid motors; self-propulsion; OVERCOMING BIOLOGICAL BARRIERS; PROPELLED MICRO-/NANOMOTORS; CONTROLLED DRUG-DELIVERY; ERYTHROCYTE-MEMBRANE; AUTONOMOUS MOVEMENT; MICROMOTORS DRIVEN; JANUS MICROMOTORS; RECENT PROGRESS; CANCER; NANOPARTICLES;
D O I
10.1002/adtp.201800056
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Natural cell membrane-camouflaged colloid motors can not only convert the surrounding environmental energy into directed movement but also possess the functions of natural cell membranes. They can autonomously move and are guided by exogenous (e.g., chemical fuel, light, magnetic field, and ultrasound) and endogenous (i.e., chemotaxis) stimuli. These biointerfacing colloid motors with efficient drug loading/transporting capacity, prolonged blood circulation, and antibiofouling and specific targeting abilities are expected to open up opportunities for various biomedical applications and are recognized as the next-generation therapeutic systems. In this progress report, the authors highlight the recent progress in research on cell membrane-coated colloid motors, as well as their potential for biomedical applications. The limitations and challenges of these colloid motors for in vivo applications are also addressed.
引用
收藏
页数:15
相关论文
共 137 条
[1]   Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors [J].
Ahmed, Suzanne ;
Wang, Wei ;
Bai, Lanjun ;
Gentekos, Dillon T. ;
Hoyos, Mauricio ;
Mallouk, Thomas E. .
ACS NANO, 2016, 10 (04) :4763-4769
[2]   Nanoarchitectonics: a new materials horizon for nanotechnology [J].
Ariga, Katsuhiko ;
Ji, Qingmin ;
Nakanishi, Waka ;
Hill, Jonathan P. ;
Aono, Masakazu .
MATERIALS HORIZONS, 2015, 2 (04) :406-413
[3]   New aspects of the molecular constituents of tissue barriers [J].
Bauer, H. C. ;
Traweger, A. ;
Zweimueller-Mayer, J. ;
Lehner, C. ;
Tempfer, H. ;
Krizbai, I. ;
Wilhelm, I. ;
Bauer, H. .
JOURNAL OF NEURAL TRANSMISSION, 2011, 118 (01) :7-21
[4]  
Baylis JR, 2016, THROMB RES, V141, pS36, DOI 10.1016/S0049-3848(16)30362-0
[5]  
BERG HC, 1973, NATURE, V245, P380, DOI 10.1038/245380a0
[6]   Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology [J].
Bertrand, Nicolas ;
Wu, Jun ;
Xu, Xiaoyang ;
Kamaly, Nazila ;
Farokhzad, Omid C. .
ADVANCED DRUG DELIVERY REVIEWS, 2014, 66 :2-25
[7]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[8]   Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date [J].
Bobo, Daniel ;
Robinson, Kye J. ;
Islam, Jiaul ;
Thurecht, Kristofer J. ;
Corrie, Simon R. .
PHARMACEUTICAL RESEARCH, 2016, 33 (10) :2373-2387
[9]   Propulsion of nanowire diodes [J].
Calvo-Marzal, Percy ;
Sattayasamitsathit, Sirilak ;
Balasubramanian, Shankar ;
Windmiller, Joshua R. ;
Dao, Cuong ;
Wang, Joseph .
CHEMICAL COMMUNICATIONS, 2010, 46 (10) :1623-1624
[10]   Remotely powered self-propelling particles and micropumps based on miniature diodes [J].
Chang, Suk Tai ;
Paunov, Vesselin N. ;
Petsev, Dimiter N. ;
Velev, Orlin D. .
NATURE MATERIALS, 2007, 6 (03) :235-240