Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates

被引:6
作者
Zhao, Yan [1 ]
Wu, Chuanxi [1 ]
Mao, Jing [1 ,2 ]
Du, Feng [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Univ Lisbon, Dept Math, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2020年 / 33卷 / 02期
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Laplacian; Eigenvalues; Spherically symmetric manifolds; Wentzell eigenvalue problem; ISOPERIMETRIC INEQUALITY;
D O I
10.1007/s13163-019-00322-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two interesting eigenvalue comparison theorems for the first non-zero Steklov eigenvalue of the Laplacian have been established for manifolds with radial sectional curvature bounded from above. Besides, sharper bounds for the first non-zero eigenvalue of the Wentzell eigenvalue problem of the weighted Laplacian, which can be seen as a natural generalization of the classical Steklov eigenvalue problem, have been obtained.
引用
收藏
页码:389 / 414
页数:26
相关论文
共 50 条
[41]   An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem [J].
Bi, Hai ;
Li, Hao ;
Yang, Yidu .
APPLIED NUMERICAL MATHEMATICS, 2016, 105 :64-81
[42]   An Overdetermined Steklov Eigenvalue Problem on Riemannian Manifolds with Nonnegative Ricci Curvature [J].
Lee, Eunjoo ;
Seo, Keomkyo .
RESULTS IN MATHEMATICS, 2025, 80 (04)
[43]   Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem [J].
Raulot, Simon ;
Savo, Alessandro .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) :1602-1619
[44]   A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering [J].
Zhang, Yu ;
Bi, Hai ;
Yang, Yidu .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) :1412-1430
[45]   Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients [J].
Zhang, Yu ;
Bi, Hai ;
Yang, Yidu .
APPLICATIONS OF MATHEMATICS, 2021, 66 (01) :1-19
[46]   A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges [J].
Lepe, Felipe ;
Mora, David ;
Rivera, Gonzalo ;
Velasquez, Ivan .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (02)
[47]   An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications [J].
Xu, Fei ;
Huang, Qiumei .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (03) :623-638
[48]   Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients [J].
Yu Zhang ;
Hai Bi ;
Yidu Yang .
Applications of Mathematics, 2021, 66 :1-19
[49]   A two-grid discretization scheme for a sort of Steklov eigenvalue problem [J].
Xia, Chao ;
Yang, Yidu ;
Bi, Hai .
ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 :2087-2091
[50]   Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem [J].
Simon Raulot ;
Alessandro Savo .
The Journal of Geometric Analysis, 2015, 25 :1602-1619