Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates

被引:6
作者
Zhao, Yan [1 ]
Wu, Chuanxi [1 ]
Mao, Jing [1 ,2 ]
Du, Feng [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Univ Lisbon, Dept Math, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2020年 / 33卷 / 02期
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Laplacian; Eigenvalues; Spherically symmetric manifolds; Wentzell eigenvalue problem; ISOPERIMETRIC INEQUALITY;
D O I
10.1007/s13163-019-00322-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two interesting eigenvalue comparison theorems for the first non-zero Steklov eigenvalue of the Laplacian have been established for manifolds with radial sectional curvature bounded from above. Besides, sharper bounds for the first non-zero eigenvalue of the Wentzell eigenvalue problem of the weighted Laplacian, which can be seen as a natural generalization of the classical Steklov eigenvalue problem, have been obtained.
引用
收藏
页码:389 / 414
页数:26
相关论文
共 50 条
[21]   A multilevel Newton’s method for the Steklov eigenvalue problem [J].
Meiling Yue ;
Fei Xu ;
Manting Xie .
Advances in Computational Mathematics, 2022, 48
[22]   Nonconforming finite element approximations of the Steklov eigenvalue problem [J].
Yang, Yidu ;
Li, Qin ;
Li, Sirui .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) :2388-2401
[23]   A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems [J].
Dello Russo, Anahi ;
Alonso, Ana E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) :4100-4117
[24]   An upper bound for the first nonzero Steklov eigenvalue [J].
Li, Xiaolong ;
Wang, Kui ;
Wu, Haotian .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31
[25]   Steklov eigenvalue problem with a-harmonic solutions and variable exponents [J].
Karim, Belhadj ;
Zerouali, Abdellah ;
Chakrone, Omar .
GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) :363-373
[26]   Isoparametric finite-element approximation of a Steklov eigenvalue problem [J].
Andreev, AB ;
Todorov, TD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) :309-322
[27]   BOUNDARY ELEMENT APPROXIMATION OF STEKLOV EIGENVALUE PROBLEM FOR HELMHOLTZ EQUATION [J].
Weijun Tang Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Beijing ChinaZhi Guan ;
Houde Han Department of Applied Mathematics Tsinghua University Beijing China .
Journal of Computational Mathematics, 1998, (02) :165-178
[28]   Local and parallel finite element algorithms for the Steklov eigenvalue problem [J].
Bi, Hai ;
Li, Zhengxia ;
Yang, Yidu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) :399-417
[29]   MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS [J].
Cao, Li-Qun ;
Zhang, Lei ;
Allegretto, Walter ;
Lin, Yanping .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) :42-73
[30]   Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation [J].
Tang, WJ ;
Guan, Z ;
Han, HD .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (02) :165-178