Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates

被引:6
作者
Zhao, Yan [1 ]
Wu, Chuanxi [1 ]
Mao, Jing [1 ,2 ]
Du, Feng [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Univ Lisbon, Dept Math, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2020年 / 33卷 / 02期
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Laplacian; Eigenvalues; Spherically symmetric manifolds; Wentzell eigenvalue problem; ISOPERIMETRIC INEQUALITY;
D O I
10.1007/s13163-019-00322-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two interesting eigenvalue comparison theorems for the first non-zero Steklov eigenvalue of the Laplacian have been established for manifolds with radial sectional curvature bounded from above. Besides, sharper bounds for the first non-zero eigenvalue of the Wentzell eigenvalue problem of the weighted Laplacian, which can be seen as a natural generalization of the classical Steklov eigenvalue problem, have been obtained.
引用
收藏
页码:389 / 414
页数:26
相关论文
共 27 条
[1]  
[Anonymous], 1985, Sem. Prob. XIX. Lect. Notes in Maths.
[2]   Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds [J].
Batista, M. ;
Cavalcante, M. P. ;
Pyo, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) :617-626
[3]  
Batista M., 1 STEKLOFF EIGENVALU
[4]   A weighted isoperimetric inequality and applications to symmetrization [J].
Betta, MF ;
Brock, F ;
Mercaldo, A ;
Posteraro, MR .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (03) :215-240
[5]   LINEAR ABADI & PLOTKIN LOGIC [J].
Birkedal, Lars ;
Mogelberg, Rasmus Ejlers ;
Petersen, Rasmus Lerchedahl .
LOGICAL METHODS IN COMPUTER SCIENCE, 2006, 2 (05)
[6]  
Calderon A. P., 1980, SEM NUM AN ITS APPL, P65
[7]   EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS [J].
CHEN, SY .
MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) :289-297
[8]  
Cheng SY, 1975, AM MATH SOC P S PURE, V27, P289
[9]   An extremal eigenvalue problem for the Wentzell-Laplace operator [J].
Dambrine, M. ;
Kateb, D. ;
Lamboley, J. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02) :409-450
[10]  
Du F., ISOPERIMETRIC UNPUB