Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates

被引:6
|
作者
Zhao, Yan [1 ]
Wu, Chuanxi [1 ]
Mao, Jing [1 ,2 ]
Du, Feng [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Univ Lisbon, Dept Math, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2020年 / 33卷 / 02期
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Laplacian; Eigenvalues; Spherically symmetric manifolds; Wentzell eigenvalue problem; ISOPERIMETRIC INEQUALITY;
D O I
10.1007/s13163-019-00322-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two interesting eigenvalue comparison theorems for the first non-zero Steklov eigenvalue of the Laplacian have been established for manifolds with radial sectional curvature bounded from above. Besides, sharper bounds for the first non-zero eigenvalue of the Wentzell eigenvalue problem of the weighted Laplacian, which can be seen as a natural generalization of the classical Steklov eigenvalue problem, have been obtained.
引用
收藏
页码:389 / 414
页数:26
相关论文
共 50 条
  • [1] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414
  • [2] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410
  • [3] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [4] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [5] Some recent developments on the Steklov eigenvalue problem
    Colbois, Bruno
    Girouard, Alexandre
    Gordon, Carolyn
    Sher, David
    REVISTA MATEMATICA COMPLUTENSE, 2023, 37 (1): : 1 - 161
  • [6] A DRBEM approximation of the Steklov eigenvalue problem
    Turk, Onder
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 122 : 232 - 241
  • [7] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [8] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [9] A full multigrid method for the Steklov eigenvalue problem
    Xu, Fei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (12) : 2371 - 2386
  • [10] Steklov eigenvalue problem on subgraphs of integer lattices
    Han, Wen
    Hua, Bobo
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2023, 31 (02) : 343 - 366