Hardy's paradox for multisetting high-dimensional systems

被引:17
作者
Meng, Hui-Xian [1 ]
Zhou, Jie [1 ]
Xu, Zhen-Peng [1 ]
Su, Hong-Yi [2 ]
Gao, Ting [1 ,3 ]
Yan, Feng-Li [1 ,4 ]
Chen, Jing-Ling [1 ,5 ]
机构
[1] Nankai Univ, Chern Inst Math, Theoret Phys Div, Tianjin 300071, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
[3] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
[4] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050024, Hebei, Peoples R China
[5] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
QUANTUM-MECHANICS; LOCAL REALISM; LADDER PROOF; NONLOCALITY; INEQUALITIES; VIOLATION;
D O I
10.1103/PhysRevA.98.062103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, an alternative form of Hardy's paradox was introduced for two-setting high-dimensional systems rhys. Rev. A 88, 062116 (2013)], for which the maximum probability of the nonlocal event was shown to increase as the dimension goes larger. Here, we generalize the result to a general scenario with multisetting high-dimensional systems. The general Hardy's paradox (i) reduces to the one by Chen et al. [Phys. Rev. A 88, 062116 (2013)] for two settings, (ii) is equivalent to the ladder proof of nonlocality without inequalities given by Boschi et al. [Phys. Rev. Lett. 79, 2755 (1! )7)] for two-dimensional systems, and (iii) increases the maximum probability of the nonlocal event for, e.g., three-dimensional systems. In particular, the maximum probability for the five-setting three-dimensional system is increased to 0.401 84, which is larger than 0.171 originally by Cabello [Phys. Rev. A 58, 1687 (1998)].
引用
收藏
页数:6
相关论文
共 22 条
[1]  
Bell J. S., 1964, PHYSICS, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[2]   Ladder proof of nonlocality without inequalities: Theoretical and experimental results [J].
Boschi, D ;
Branca, S ;
DeMartini, F ;
Hardy, L .
PHYSICAL REVIEW LETTERS, 1997, 79 (15) :2755-2758
[3]   WRINGING OUT BETTER BELL INEQUALITIES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
ANNALS OF PHYSICS, 1990, 202 (01) :22-56
[4]   Bell nonlocality [J].
Brunner, Nicolas ;
Cavalcanti, Daniel ;
Pironio, Stefano ;
Scarani, Valerio ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2014, 86 (02) :419-478
[5]   Ladder proof of nonlocality without inequalities and without probabilities [J].
Cabello, A .
PHYSICAL REVIEW A, 1998, 58 (03) :1687-1693
[6]   Simple Hardy-Like Proof of Quantum Contextuality [J].
Cabello, Adan ;
Badziag, Piotr ;
Cunha, Marcelo Terra ;
Bourennane, Mohamed .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[7]   Hardy's nonlocality for generalized n-particle GHZ states [J].
Cereceda, JL .
PHYSICS LETTERS A, 2004, 327 (5-6) :433-437
[8]   Hardy's paradox for high-dimensional systems [J].
Chen, Jing-Ling ;
Cabello, Adan ;
Xu, Zhen-Peng ;
Su, Hong-Yi ;
Wu, Chunfeng ;
Kwek, L. C. .
PHYSICAL REVIEW A, 2013, 88 (06)
[9]   Hardy's nonlocality proof using twisted photons [J].
Chen, Lixiang ;
Romero, Jacquiline .
OPTICS EXPRESS, 2012, 20 (19) :21687-21692
[10]   Experimental test of the violation of local realism in quantum mechanics without Bell inequalities [J].
Di Giuseppe, G ;
DeMartini, F ;
Boschi, D .
PHYSICAL REVIEW A, 1997, 56 (01) :176-181