Infinite special branches in words associated with beta-expansions

被引:0
|
作者
Frougny, Christiane [1 ]
Masakova, Zuzana [2 ]
Pelantova, Edita [2 ]
机构
[1] Univ Paris 08, CNRS, LIAFA, UMR 7089, F-75251 Paris, France
[2] Czech Tech Univ, Dept Math, FNSPE, CZ-12000 Prague, Czech Republic
来源
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE | 2007年 / 9卷 / 02期
关键词
factor complexity function; Parry numbers;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A Parry number is a real number beta > 1 such that the Renyi beta-expansion of 1 is finite or in finite eventually periodic. If this expansion is finite, beta is said to be a simple Parry number. Remind that any Pisot number is a Parry number. In a previous work we have determined the complexity of the fixed point u(beta) of the canonical substitution associated with beta-expansions, when beta is a simple Parry number. In this paper we consider the case where beta is a non-simple Parry number. We determine the structure of infinite left special branches, which are an important tool for the computation of the complexity of u(beta). These results allow in particular to obtain the following characterization: the infinite word u(beta) is Sturmian if and only if beta is a quadratic Pisot unit.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 50 条
  • [1] Complexity of infinite words associated with beta-expansions
    Frougny, C
    Masáková, Z
    Pelantová, E
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2004, 38 (02): : 163 - 185
  • [2] Complexity of infinite words associated with beta-expansions (vol 38, pg 163, 2004)
    Frougny, C
    Masáková, Z
    Pelantová, E
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2004, 38 (03): : 269 - 271
  • [3] Beta-expansions for infinite families of Pisot and Salem numbers
    Hare, Kevin G.
    Tweedle, David
    JOURNAL OF NUMBER THEORY, 2008, 128 (09) : 2756 - 2765
  • [4] FINITE BETA-EXPANSIONS
    FROUGNY, C
    SOLOMYAK, B
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 : 713 - 723
  • [5] Distributions of full and non-full words in beta-expansions
    Li, Yao-Qiang
    Li, Bing
    JOURNAL OF NUMBER THEORY, 2018, 190 : 311 - 332
  • [6] Arithmetics of beta-expansions
    Guimond, LS
    Masáková, Z
    Pelantová, E
    ACTA ARITHMETICA, 2004, 112 (01) : 23 - 40
  • [7] Growth rate for beta-expansions
    De-Jun Feng
    Nikita Sidorov
    Monatshefte für Mathematik, 2011, 162 : 41 - 60
  • [8] Digit frequencies of beta-expansions
    Y.-Q. Li
    Acta Mathematica Hungarica, 2020, 162 : 403 - 418
  • [9] Growth rate for beta-expansions
    Feng, De-Jun
    Sidorov, Nikita
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (01): : 41 - 60
  • [10] Digit frequencies of beta-expansions
    Li, Y-Q
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) : 403 - 418